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INTRODUCTION 

The obese Zucker rat has an Inherited autosomal 

recessive obesity (12), The rat was a spontaneous mutant 

from a Sherman and Merck Stock N cross (12). Hétéro­

zygotes for the obesity gene appear normal. The zucker 

rat obese syndrome la well-characterized, but the actual 

metabolic defects which are responsible for the obesity 

are unknown. This dissertation is designed to examine 

the role that the muscle and liver tissues may play in 

the etiology of the lower energy expenditure of this 

obese model. 

The obese Zucker rat differs in many aspects from 

its nonobese counterpart. The obese rat exhibits hyper-

insulinemla (l4, 20), hyperphagla (23), hyperlipemia 

(11, 70), increased levels of nitrogen in the urine 

(l4, 21), and Increased rates of llpogenesls and lipid 

deposition (7» 11, 73)* It also has larger adipose 

cells (46), a defective thermogenic response to cold (45) 

and diet (69, 79)# an enlarged liver (15)» and an in­

creased adipose tissue lipoprotein lipase activity (34). 

Endocrine defects, in addition to hyperlnsullnemia, in­

clude decreased serum levels of thyroxine (T^^, triiodo­

thyronine (T^) (79), growth hormone, and prolactin (56). 
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Norepinephrine synthesis Is also depressed In the obese 

rat (5). The muscles of the obese rat are Insulln-

reslstant (18, 19). Muscle growth In the male Is com­

promised (64). The obese rat has a lower maintenance 

energy requirement than the nonobese rat (59) and a 

lower spontaneous activity (74). 

It Is evident from the above that the obese Zuckër 

rat is quite different from its nonobese counterpart. 

The literature review which follows will examine many of 

the characteristics of the obese Zucker rat in more 

detail. Further, aspects of muscle metabolism which 

are germane to this dissertation are covered in 

the literature review. The individual papers in this 

dissertation also outline various aspects of zucker 

rat metabolism and muscle metabolism. I have tried to 

reduce duplication between the literature review and 

the papers when possible. If a concept was covered 

sufficiently in the papers, it was not Included in the 

literature review. 

Explanation of dissertation format 

This dissertation is written in the alternate style. 

It contains this introduction, a literature review, three 

papers for publication, and a final discussion. 
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I performed the majority of the laboratory work In 

the three papers. Dr. Murray Kaplan and Elaine Herlnk 

helped me measure hepatocyte oxygen consumption and Monloa 

de Baca helped me determine the body composition of the rats 

which were exercised on the treadmill. In addition, 

Dr. Murray Kaplan helped me plan and analyse all of the 

experimental work presented In this dissertation. 
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LITERATURE REVIEW 

The Zuclcer Rat 

Hyperphagla 

Hyperphagla, which begins at 4 weeks of age (73)i 

Is not necessary for development of the obese state In 

the zucker rat (l6)« However, when fed ad libitum, 

hyperphagla allows the obese rat to gain weight and store 

lipid at such a rapid pace that the phenotypes can be 

visually identified at 5 weeks of age. Hyperlnsullnemla 

is a main Impetus behind this hyperphagla. When the 

obese rat Is maintained In a normolnsullnemlc state, the 

hyperphagla Is reduced (l4, 75). If Insulin levels are 

then raised In the two phenotypes, the obese animals 

respond with a greater Increase In food Intake than 

the nonobese (l4). Adrenalectomy also reduces hyper­

phagla In the obese rat, but It lowers insulin levels 

at the same time (78). so. It Is not clear If adrenal­

ectomy has a direct effect on hyperphagla, or just an 

Indirect effect through Insulin. 

The obese rat does not convert dietary protein 

into lean body mass as efficiently as the nonobese rat 

(79)» Radcliffe and Webster (63» 64) have suggested 

that, because of this inefficiency, the obese rat must 
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consume more food In order to receive the extra protein 

It needs. Hyperphagla Is reduced when the protein 

concentration of the diet Is Increased (43, 63), but 

food consumption In the obese rat remains In excess 

of the nonobese even with a ration which contains twice 

the protein necessary for maximum lean body mass accre­

tion In both rats (64). when given a chance to choose 

between three nutrient sources, namely a high carbohy­

drate ration, a high protein ration, and corn oil, the obese 

rat consumes more of the corn oil and the same amount 

of protein as the nonobese rat (13). if hyperphagla 

Is a response to an Increased need for protein, the 

obese animal should eat more of the high protein ration. 

so, the need for extra protein does not appear to be a 

major cause of the hyperphagla. 

deary et al. (16) have suggested that elevated 

lipoprotein lipase levels In the adipose tissue pull too 

much lipid Into storage and this forces the obese rat to 

eat more food to compensate. However, this Increase 

In lipoprotein lipase activity precedes the hyperphagla 

by two weeks (30, 34, 73)# Furthermore, the obese rat 

has hypertriglyceridemia by 2 weeks of age (11). Thus, 

before the hyperphagla begins, the obese rat already has 
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ample lipid available at all times for muscle and 

other tissues to utilize, in addition, lipid uptake 

and lipoprotein lipase activities are similar in the 

muscles of the obese and nonobese rats (58)* As shown 

in fasting experiments, the obese can utilize lipid for 

fuel (25)• It does not appear then that Increased 

adipose tissue lipoprotein lipase activity is causing 

the hyperphagia. 

Hyperinsullnemia 

Hyperinsulinemia occurs at weaning in the obese 

rat, and Turkenkopf et al. (77) have presented evidence 

that hyperinsulinemia also may be present in the 21 day 

old preobese fetus, it is not possible, however, to 

Identify phenotype in the fetus. These researchers 

used fetuses from a fa/fa male and fa/+ female cross, 

and fetuses from a +/+ x +/+ cross. The first cross 

should produce an equal amount of obese and nonobese 

fetuses, while the second cross should yield only 

nonobese fetuses, plasma insulin in the fetuses from 

the first cross had a bimodal distribution. One group 

was normolnsullnemlc when compared to the fetuses from 

the homozygote dominant cross (all nonobese)• The other 

group was hyperlnsullnemlc by comparison. So, hyper-
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Instillnemla may already be present In the pre obese 

fetus at birth, and Is just suppressed by the high con­

centration of lipid in the dam's milk until weaning 

occurs• 

Hyperinsulinemia is not a necessary condition for 

the manifestation of the obese state. The obese rat, 

when maintained in a normoinsulinemic state after 

streptozotocin or alloxan treatment, gains weight at a 

slower rate than the normal obese rat, and its food 

consumption is decreased (l4, 75)* However, the normo­

insulinemic obese animal still maintains a greater per­

centage of body lipid than the nonobese rat (l4, 75) 

and its elevated rates of hepatic lipogenesis remain 

intact (75)• 

Lipogenesis and lipid accretion 

Increased hepatic lipogenesis is evident by 4 weeks 

of age in the obese rat (73)» Peak rates of hepatic 

lipogenesis occur at 6 weeks, which coincides with the 

peak in the nonobese rat. However, peak rates are much 

higher in the obese rat in comparison to the nonobese 

(73)* Increased hepatic lipogenesis in the obese rat is 

not normalized by pair feeding to the nonobese rat ( 8 ,  5 6 ) ,  

treadmill exercise (20), or adrenalectomy (78). The 
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liver of the obese rat also has a higher glycolytic 

activity than that of the nonobese. This directs 

metabolic flow to pyruvate, citrate, and then fatty acid 

synthesis, as well as provides glycerolphosphate for 

lipid esterification (57)* 

Some Investigators suggest that the high serum 

insulin to glucagon levels create an environment in 

the obese animal which encouraged llpogenesls, lipid 

esterification, and decreased lipid oxidation (2, 29), 

Normalizing insulin levels in the obese rat does not 

decrease the rates for hepatic lipogenic enzymes to 

nonobese levels (75)• Hyperlnsullnemla may play a 

role in the increased obese hepatic llpogenesls, but 

it is not obligatoryo Further, in spite of serum 

Insulin and glucagon level abnormalities, the obese 

liver is as sensitive to its respective lipogenic 

and lipolytic effects as the nonobese liver (2, 3^» 76)* 

Hepatic llpogenesls is not as sensitive to the level 

of lipid availability in the obese rat as in the nonobese. 

Higher levels of lipid are needed to inhibit llpogenesls. 

Even with maximum Inhibition, llpogenesls is still 

higher in the obese liver relative to that of the non­

obese (2). 
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The obese rat has more body fat than the nonobese 

rat by 2 weeks of age (11). The obese rat also has 

hyperlipemia and Increased lipoprotein lipase activity 

In the epldldymal fat pad at this age (34). Increased 

lipid accretion In the obese rat occurs In spite of 

pair feeding to nonobese animals (8, l6), restriction 

of caloric Intake to half that of the nonobese (21), 

maintenance of normolnsullnemla (75)» adrenalectomy (78), 

thyroid hormone replacement (52), treatment with the 

ATP citrate lyase Inhibitor (-)-hydroxycltrate (32), 

or treadmill exercise (20). The obese rat will synthe­

size and store more body lipid than the nonobese not­

withstanding any nonlethal biochemical or physical 

attempt to stop It. 

Thermogenesls 

Body temperature Is lower In obese rats than 

In nonobese rats at l6 days of age (31). Kaplan (45) 

has demonstrated that the 10 week old obese rat cannot 

Increase Its whole body oxygen consumption In response 

to cold, when given thyroid hormone replacement therapy, 

the obese rat has a normal cold-Induced thermogenic 

response (52). Adrenalectomy of the obese rat also 

normalizes cold-Induced thermogenesls (55)« Marchlngton 
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et al. (55) suggest that adrenal steroid Inhibition of 

Intrascapular brown adipose tissue (IBAT) metabolism 

in the obese rat Is in part responsible for this defec­

tive thermogenesis* 

When Injected with norepinephrine, the obese rat 

responds with a normal rise in whole body oxygen consump­

tion (68). Levin et al. (51) and Rothwell et al. (68) 

suggest that the obese rat has an Inadequate norepine­

phrine synthetic response to cold, which in turn con­

tributes to its reduced cold-induced thermogenic response. 

Both groups indicate that noreplnephrlne-Induced oxygen 

consumption is similar in the IBAT. The obese animals 

just do not make enough norepinephrine. Kasser and 

Martin (4?) also have demonstrated that there is no 

defect in basal and noreplnephrine-stimulated palmltate 

oxidation in the IBAT in obese rats at 5 weeks of age. 

They have further shown that the IBAT from obese animals 

weighs significantly more than that of the nonobese. 

However, Levin et al. (50) suggest that this difference 

in IBAT weight is due to white fat infiltration. They 

find fewer multlloculated cells and fewer high affinity 

^-adrenergic binding sites In the IBAT from obese rats 

than from nonobese rats. 
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Dietary-induced thermogenesls (DIT) Is lower In 

the obese than In the nonobese rat (69). Rothwell and 

Stock (69) suggest that DIT has two components. Part 

of the Increase In oxygen consumption after a meal Is 

due to the digestion and absorption of food, and the 

other part Is due to noreplnephrlne-stlmulated IBAT 

oxygen consumption. This group has shown that ^-adren­

ergic blockers significantly reduce DIT In nonobese 

rats, but have no effect on DIT In obese rats. They 

suggest that the reduction In DIT In the obese rats Is 

due to a lack of the IBAT component (69). Young et al. 

(79) have demonstrated a lack of DIT In the obese rat 

In a different way than Rothwell and stock. This group 

has diluted the protein content of the animals' diet with 

carbohydrate and showed that both phenotypes responded 

with an Increase in food consumption. Serum T^ levels 

increase in the nonobese rat in response to hyperphagla. 

However, serum T^ levels do not increase in the obese, 

which Indicates that these animals have defective DIT, 

possibly due to an inadequate response of Tj to diet 

composition. 

Metabolic efficiency 

Using the body balance technique, Mowry and Hersh-
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berger (59) have determined that the obese rat has a 

lower maintenance energy requirement than the nonobese 

rat, with this technique, the Investigator feeds an 

animal different energy levels for periods of time and 

extrapolates back to the amount of energy which just 

allows for the maintenance of body weight, deary et al, 

(l6) have demonstrated that even when pair fed to nonobese 

rats from weaning, as well as having their milk intake 

reduced before weaning, the Increased metabolic efficiency 

of the obese rats allows them to gain more weight and 

weigh more at 33 weeks of age than the nonobese rats. 

This Increased metabolic efficiency in the obese 

rat may be in part due to its propensity for llpogenesls. 

Radcllffe and Webster (63) have shown that the energy 

cost for lipid and protein synthesis is 1.4 and 2,3 

kiloJoules of metabolizable energy per kilogram of tissue, 

respectively. The diversion of energy from lean body 

mass to lipid synthesis can then contribute to the obese 

rat's increased metabolic efficiency. Marchlngton et 

al. (55) suggest that the phenotypic difference in meta­

bolic efficiency, as with thermogenesis, is in part due 

to adrenal steroid inhibition of IBAT metabolism. Adre­

nalectomy normalizes metabolic efficiency in the obese 

rat (55)• 
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The phenotyplc difference In metabolic efficiency 

has been erroneously linked to the decreased whole body 

oxygen consumption of the obese rat. On a whole animal 

(69) or per protein (44) basis, the obese and nonobese 

rats have similar rates of oxygen consumption* It Is 

only when oxygen consumption Is expressed on a body 

weight basis that the obese rat has a lower oxygen con­

sumption. The obese rat has not only as much lean 

tissue as the nonobese rat (69)» It also has much more 

lipid. The excess lipid adds weight to the animal but 

consumes very little oxygen. Thus, the obese animal 

ends up with a lower oxygen consumption per gram of 

body weight, but Its lean tissue, which Is what meta­

bolic efficiency Is based on, uses as much oxygen as In 

the nonobese animal. Similar oxygen consumption on a per 

protein basis actually has only been demonstrated for 

6 month old zucker rats (48). However, at approximately 

12 weeks of age, whole body oxygen consumption (69) and 

total body protein (64) are phenotyplcally similar. 

Therefore, oxygen consumption on a per protein basis Is 

probably phenotyplcally similar at 12 weeks. 

Lean body mass and muscle mass accretion 

Most studies of body composition of the zucker rat 

measure lean body mass or total body protein rather than 
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muscle mass. Total body protein or lean body mass 

are not synonymous with muscle mass, especially in the 

obese zucker rat. The larger liver of the obese rat, 

which is due to increased lipid (3, 10, 29) and protein 

deposition (15)» can mask a deficit in muscle mass even 

when lean body mass or total body protein is phenotypi-

cally similar. If muscle mass is to be quantitated, it 

needs to be measured and not estimated from lean body 

mass or total body protein. Estimation of muscle mass 

can be made if "empty carcass" weight is determined. 

The "empty carcass" is defined as what remains of the 

animal after removal of skin and all subcutaneous fat, 

head, visceral organs, paws, and tail. 

The obese rat has a decreased rate and efficiency 

of lean body mass accretion in comparison to the nonobese 

rat (24, 79)* This has been demonstrated as early as 27 

days of age (7)» When Injected with -amino acids, the 

obese rat converts half as much of the labeled amino acids 

to body protein and converts three times as much into 

lipid in comparison to the nonobese rat (24). Treadmill 

training improves nitrogen retention in the obese rat, but 

the obese rat is still less efficient in the conversion 

of dietary protein to body protein (20). when fed high 
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protein diets, obese rats gain similar amounts of lean 

body mass in comparison to their usual ration. Nonobese 

animals increase total lean body mass on the high pro­

tein diet (43)• When the obese animal is maintained in 

a normoinsulinemio state* lean body mass accretion is 

increased, but the rate of accretion is still less than 

the nonobese rate (l4). 

"Empty carcass" weight, and therefore muscle mass, 

is phenotyplcally decreased in the male obese rat at 10 

weeks of age (64). This is not true for females (64). 

Individual muscle weights are also lower in the male 

obese rat than in the nonobese rat (71). Fair feeding 

the obese to nonobese rats further exacerbates the 

difference in muscle mass (l6). 

Increased protein degradation in the obese rat may 

be primarily responsible for the lack of muscle growth 

(24), as evidenced by the increased levels of nitrogen 

(14) and 3-methylhistidine (25) in the urine. Further, 

the concentrations of protein, RNA» and DNA in the muscles 

of obese and nonobese rats are similar (71)* as is the 

fractional rate of protein synthesis (53)* Shapira et 

al. (71) suggest that the decreased bone growth and serum 

growth hormone levels also compromise muscle growth in 
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the obese rat. in addition» Czech et al. (19) suggest 

that the decreased muscle growth in the obese rat is 

partly due to muscle insulin resistance. This Insulin 

resistance renders the muscles unresponsive to the 

anabolic effects of the hormone. 

Muscle metabolism 

Rates of palmltate (58) and glucose (18) oxidation 

are phenotypically similar in the soleus muscles from 

6 week old zucker rats. Glycolytic flux, 2-deoxyglucose 

uptake, rates of basal and insulin-stimulated glycogen 

synthesis (18, 19) and in vitro muscle oxygen consumption 

(18) also are similar in both phenotypes at this age in 

the soleus muscle. By ten weeks of age, the soleus muscle 

from obese rats is insulin resistant and exhibits a 

rlghtward shift in the Insulin response curve for gly­

colytic flux, glucose oxidation, glycogen synthesis, 

and 2-deoxyglucose uptake (18, 19)# Muscle insulin 

resistance also has recently been demonstrated in the 10 

week old eviscerated obese carcass (72). Palmltate 

oxidation rates at 12 weeks are still phenotypically 

similar (58) as is muscle oxygen consumption in perfused 

hindquarters from 20 week old zucker rats (48). There­

fore* insulin resistance is the only known major 
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metabolic defect present In the muscles of the obese 

Zucker rat. 

Response to fasting 

When fasted, the obese animal decreases Its rate 

of protein degradation and Increases Its rate of lipid 

oxidation more than the nonobese animal. The result 

of this phenotyplc difference In lipid and protein 

metabolism Is that the obese animal can fast for 60 

days, while the nonobese can only fast for 9 days (25). 

The importance of this difference in response to 

fasting Is questionable, but It does point out that 

the obese animal can oxidize lipid readily for Its 

energy needs. 

Skeletal Muscle 

Classification of fiber types 

Skeletal muscle fibers were originally classified 

by color, red or white. This classification was later 

refined and the categories became red-slow twitch, red-

fast twitch, and white-fast twitch, as twitch time and 

color were used for classification criteria. This 

nomenclature was further refined and today we have fast 

twitch-glycolytic (PG), fast twitch-oxidatlve-glycolytic 

(FOG), and slow twitch-oxidatlve (SO) muscle fiber types 
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(6l). This scheme uses twitch time and enzymatic profile 

to classify fibers, A fourth type of skeletal muscle 

fiber, which is a tonic rather than a twitch fiber, Is 

also present In mammals. However, It does not exist 

In locomotory muscles ( 3 6 ) .  

Skeletal muscle fibers In a mammal are primarily 

slow twitch at birth, and in the rat differentiate Into 

slow and fast twitch fibers by five weeks of age (17). 

Twitch time Is an Important characteristic of a muscle 

fiber, especially for slow twitch fibers, A slow 

twitch time allows for summation of fibers so tetanic 

contractions can be maintained at constant tension with 

a low metabolic cost (28), The actual twitch time and 

enzymatic profile of any fiber Is determined by the 

pattern of electrical stimulation the fiber receives 

from Its motoneuron, skeletal muscles are composed 

of groups of fibers. Each group or motor unit Is con­

trolled by Its Individual motoneuron (9). Muscles 

are composed of many motor units and each muscle can be 

primarily one fiber type, or a mixture of fiber types. 

This depends on the variety of electrical signals sent 

via the motoneurons that control the Individual muscle 

(37). 

Muscle fibers primarily perform aerobic respiration 

since their high levels of ATP and citrate Inhibit gly-
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colysls (66), when necessary, the PG and POG fibers 

have a great capacity for anaerobic respiration as well. 

The capacity for different types of respiration Is a 

function of the muscle fiber's enzymatic profile (5)» An 

entire muscle can be classified as either primarily 

glycolytic or oxidative from the relative concentrations 

of FG, FOG, and SO fibers that It contains. The SO 

and FOG fibers have similar activities of |3-ozldatlon, 

TCA cycle, and oxidative phosphorylation enzymes. The 

FG and FOG fibers have similar activities of glycolytic 

enzymes. The SO fibers have little glycolytic capacity 

and the FG fibers have limited oxidative metabolic 

capacity (6l), Enzyme activities allow the FOG fibers 

to respire either aeroblcally or anaeroblcally at high 

rates. Enzymatic profiles In muscle, as with twitch 

time, can be altered If the electrical pattern which Is 

received by a fiber from Its motoneuron Is altered. 

Cross Innervation of SO fibers with a FOG motoneuron 

results In an Increase In glycolytic capacity and a 

reduction In oxidative capacity (5). 

consistent with their profiles of enzymatic activity, 

the FG, FOG, and SO fibers differ In their relative 

capacity to oxidize various substrates. The FOG and 

SO fibers oxidize pyruvate and palmltate at approxi­

mately the same rate, whereas the FG fibers only oxl-
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dlze palmitate half as readily as the other fibers (39)* 

The PG fiber has a high capacity for cX-glycerolphosphate 

oxidation relative to the other fibers, and this dif­

ference Is more pronounced when FG and SO fibers are 

compared to each other. The high rate of ZX-glycerol-

phosphate oxidation In the FG and FOG fibers provides an 

alternate pathway to lactate dehydrogenase for NADH 

reoxidatlon during anaerobic metabolism (39)» 

This dissertation uses the soleus muscle for a modal 

of SO fibers, and the extensor digltorum longus (EDL) and 

white portions of the medial gastrocnemius muscles 

for models of a combination of FG and FOG fibers. The 

rat has no muscle which is entirely FG or FOG., The 

soleus is composed of 84^ SO fibers, whereas the EDL 

and gastrocnemius muscles contain 96^ FG and FOG fibers 

(1), The FOG fibers in the EDL and gastrocnemius give 

these muscles oxidative as well as glycolytic capacity. 

Muacle blood flow and oxygen consumption 

Muscle blood flow is the metabolic throttle for 

muscle oxygen consumption and metabolism in small 

animals (9, 33)* In vitro muscle oxygen consumption 

rates reported in this dissertation may not reflect in 

vivo rates since the muscles are necessarily isolated 

from their blood flow. In light of this potential dif­

ference between in vivo and in vitro muscle oxygen con­
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sumption, It Is Important to examine the relationship 

between blood flow and oxygen consumption. 

Blood flow In the cat soleus muscle Is twice as 

great as In the gastrocnemius muscle at rest and three 

times as great during contraction (65). Since the EDL 

and gastrocnemius muscles are similar In twitch time and 

enzymatic profile, this same difference In blood flow 

probably holds for the soleus and EDL muscles as well. 

This difference In blood flow between slow and fast 

twitch muscles Is not just due to the maintenance of 

posture since the difference remains when the animal 

Is under anesthesia (65). Muscles with large propor­

tions of both slow and fast twitch fibers probably 

have a dual circulation with different rates of blood 

flow to the different fiber types (28, 40). 

The higher rate of blood flow Is critical to the 

soleus muscle since It relies more on blood-borne 

nutrients and less on glycogen stores for Its metabolic 

fuel (65). Further, since the soleus Is a tonic muscle, 

rather than a phasic muscle such as the EDL, It must be 

able to sustain Its tension. Therefore, It must receive 

a plentiful oxygen supply, polkow and Hallcka (28) have 

demonstrated that the vascular bed of the cat gastroc­

nemius can only keep the muscle oxygenated during con­

traction for 4-5 seconds, in this muscle, the extra 
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oxygen stored In myoglobin is very important. The soleus 

muscle has an ample vascular bed and blood flow to keep 

it oxygenated over its entire range of normal discharge. 

When blood flow to a fast twitch muscle is partially 

blocked, endurance decreases very little, while in the 

same circumstances endurance in the soleus is greatly 

affected (62). 

Cross Innervation of the rabbit EDL with the 

soleus motoneurons causes the EDL muscle to Increase 

its capillary density and resistance to fatigue in only 

four days (4l). This change takes place long before any 

enzymatic changes (42). This Increase In capillary 

density allows the EDL muscle to extract more oxygen 

out of the blood, even If blood flow remains the same 

(4l). capillary density Is six times greater In the 

rat soleus than In the gastrocnemius (6?). 

It appears then that In vitro oxygen consumption of 

the soleus and EDL muscles may not reflect their true 

relative In vivo rates since they probably don't receive 

the same amount of blood flow or have similar capillary 

densities. Blood flow In rat soleus and EDL muscles 

never has been compared directly, but It Is safe to 

assume from the data presented that the capacity for 

oxygenation of muscle fibers will be greater In the 

soleus than In the EDL muscle. 
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The response of skeletal muscle to treadmill training 

The leg muscles of the rat respond to treadmill 

training with an Increase In mitochondrial number (38), 

mitochondrial enzyme activities (4, 38), capillary 

density {67), and other changes. The pace and duration 

of the exercise needs to be approximately 25 meters/ 

minute for 90 minutes up a 5-10** grade to consistently 

see these results* The soleus and gastrocnemius 

muscles show the most rapid adaptation. The EDL muscle 

needs a much steeper grade and higher speeds (30 meters/ 

minute) to experience a training response (26). several 

Investigators report that the degree of muscle response 

to exercise is primarily determined by the duration, 

rather than the pace of the training (23, 27, 35)* 

Training protocols vary. Muscle responses to 

treadmill training vary as well. Generally, muscles 

respond quantitatively as followsi 

1.) Mitochondrial enzymes - citrate synthase 
activity Increases 25~100%, succinate 
dehydrogenase activity increases 25-100#, 
and cytochrome oxidase activity increases 
50-100# (4, 26, 27, 38) 

2. Myoglobin Increases approximately 80# (60) 

3.) Total mitochondrial protein Increases 
approximately 50# (38) 

4.) cytochrome c content increases approx­
imately 40# (4) 
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5») Mitochondrial respiration on a per protein 
basis Increases by approximately 65^ (26) 
or not at all (49), This depends on the 
Intensity of the exercise. 

The male rat further responds to treadmill exercise with 

a decrease In food Intake and a lower rate of lean 

body mass accretion than the sedentary controls (23). 

Females do not decrease their food Intake when they 

are trained on a treadmill and grow normally (22, 35)* 
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PAPER I. OXYGEN CONSUMPTION AND OXIDATIVE 

CAPACITY OF MUSCLES FROM YOUNG 

OBESE AND NONOBESE ZUCKER RATS 
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ABSTRACT 

The contribution of muscle tissue to the Increased 

metabolic efficiency of the obese (fa/fa) zucker rat at 6 

weeks of age was examined, in vitro oxygen consumption was 

similar in obese and nonobese soleus and extensor dlgltorum 

longus (EDL) muscles, whether the animals were in an ad 

libitum fed, fasted, or triiodothyronlne-stlmulated state. 

NO phenotypic difference in in vitro oxygen consumption was 

seen when the muscles were preincubated with insulin, py­

ruvate kinase, citrate synthase, succinate dehydrogenase, 

and cytochrome oxidase activities were phenotypically simi­

lar in the soleus and the EDL muscles, phosphofructo-

kinase and lactate dehydrogenase activities were increased 

in the obese soleus, while hexokinase activity was in­

creased in the nonobese EDL* Mitochondrial and whole 

muscle homogenate respiration rates were similar in both 

phenotypes. The soleus and EDL muscles from the obese 

animals weighed less than those from the nonobese, but 

"empty carcass" weights were similar. Taken together these 

data suggest that muscle mass, muscle oxygen consumption, 

and muscle oxidative capacity are similar in 6 week old 

obese and nonobese rats. Therefore, defective energy 

metabolism in muscle probably does not contribute to the 

Increased metabolic efficiency of the young obese rat. 



www.manaraa.com

29 

KEY WORDS 

oxygen consumption, empty body weight, mitochondrial 

enzyme activities, glycolytic enzyme activities, 

mitochondrial oxygen consumption, muscle, obesity, 

triiodothyronine 



www.manaraa.com

30 

INTRODUCTION 

The obese Zuoker rat. In comparison to the nonobese 

rat, exhibits hyperphagia (46), hyperinsulinemia (52), 

a decreased whole body oxygen consumption (29), a lower 

maintenance energy requirement (37)i and decreased thermo­

genic responses to cold (29) and diet (56). The animal 

also has lower serum levels of growth hormone (34), thy­

roxine (T^), and triiodothyronine (T^) (56). The liver 

and adipose tissue of this rat show increased rates of 

de novo lipogenesis (46) and the adipose tissue is further 

characterized by hypertrophy and eventual hyperplasia (30). 

increased lipid accretion in the obese animal is evident 

at one week of age (7), which, along with hyperinsulinemia 

and a decreased vdiole body oxygen consumption, make it 

one of the first metabolic abnormalities seen in the obese 

rat. This increased lipid accretion will take place in 

spite of food restriction (5, 13), treadmill training 

(14, 17), or the maintenance of normoinsulinemia (9# 49). 

The male obese rat specifically has a lower rate of 

accretion for lean body mass (39), a decreased efficiency 

of protein gain (20), and stunted growth in certain 

skeletal muscles (43). This rat also has increased levels 

of nitrogen (9) and 3-methyl histidlne (20) in its urine. 
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and oxidizes protein at a greater rate for energy pro­

duction (20). Even If the concentration of protein In 

the diet Is Increased, the obese rat still cannot gain 

lean body mass at the rate of the nonobese rat (28), 

Muscle contributes significantly to the rat*s body 

composition. A lower muscle oxygen consumption or total 

muscle mass In the young obese rat could make an Important 

contribution to the rat's Increased metabolic efficiency. 

The purpose of this study was to determine If a phenotyplc 

difference existed In muscle oxygen consumption, muscle 

Oxidative capacity, or total muscle mass In the 6 week old 

male Zucker rat. in so doing, we wanted to outline the 

role of skeletal muscle. If any. In this phenotyplc dif­

ference In metabolic efficiency. 
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MATERIALS AND METHODS 

Animals 

Six week old male obese and nonobese Zucker rats were 

obtained from the breeding colony at lowa state university. 

The animals were fed a commercial rat ration (Balston-purlna, 

St. Louis, HO) ad libitum and maintained at 24°c and SQ% rela­

tive humidity. They were housed In wire bottom cages on a 

12 hour light-dark cycle, when treated with triiodothyronine 

(Tj), the rats were Injected l.p. with 3.1 ug T^ per gram of 

body protein for 3 days, controls received saline Injec­

tions. Body protein was estimated from body weight as out­

lined by Dunn et al. (21). 

"Empty carcass" weight and protein 

Each rat was decapitated, skinned, and eviscerated. 

Then the paws, all visible fat deposits, and the tall 

were removed. We will refer to what remains of the car­

cass as the "empty carcass". This "empty carcass" was 

weighed and frozen. The frozen carcass was homogenized 

In distilled water, and a portion was lyophlllzed. The 

lyophlllzed samples were weighed and portions were taken 

for protein and lipid determination. Total "empty 

carcass" lipid was determined gravlmetrlcally after 

extraction with chloroformimethanol (2:1 v/v), filtra-
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tion over NagSO^, and evaporation. Samples for the 

determination of "empty carcass** protein (approximately 

250 mg) were digested at 420°c In 20 ml of concentrated 

sulfuric acid which contained 0.3# selenium dioxide. 

The ammonia that remained In the digest was determined 

spectrophotometrlcally by the method of Chaney and 

Marbach (11). The nitrogen concentration was multiplied 

by 6.25 to vield the protein concentration. 

In vitro muscle oxygen consumption 

Soleus and extensor dlgitorum longus (EDL) muscles 

were rapidly dissected after decapitation of the rat 

and tied taut at the tendons across a wire clip which 

was formed in the shape of a horsehoe. The muscles 

were incubated for 30 minutes in Krebs-Elnger bicarbo­

nate (KBB) (18) media which contained only 1.25 mM 

calcium at 37°C in a gryrotory metabolic shaker and 

gassed continually with 95^ C02* Substrates and 

hormones were added as indicated in the tables. The KRB 

media which contained palmitate was prepared as outlined 

by HcNamara et al. (36). After 30 minutes of incubation 

oxygen consumption was determined at 37°C in 95% 02^5% 

COg-saturated KRB media of the same composition that was 

used during the incubation, except in the case of assays 
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with palmltate. The bovine serum albumin (BSA) that 

was used In the preparation of the palmltate medium 

foamed excessively In the oxygen electrode chamber. In 

those assays, the muscles were Incubated In the palmltate 

medium and oxygen consumption was determined In the KRB 

medium without added substrate, leakage of oxygen from 

the electrode chamber (Yellow springs Model No. 53) was 

minimized by the Injection of mineral oil Into the sample 

Introduction slot, oxygen content of the media was de­

termined by the method of Robinson and cooper (4l). 

Muscle protein was quantified by the biuret method with 

BSA as a standard (32). 

Mitochondrial oxygen consumption 

Minced soleus and EDL muscle tissue from decapitated 

rats was digested for 7 minutes In 100. mM sucrose, 180 mM 

KCl, 50 mM trls (hydroxymethyl)amlnomethane (Trls), 10 mM 

ethylenedlamlnetetraacetlc acid (EDTA)» 5 mM MgCl2# 1 mM 

ATP# and 1^ BSA, which contained 0.5/É Nagarse (51)» The 

concentration of muscle in the digest was 10^. The di­

gest was then diluted to twice its volume in homogenizing 

media without Nagarse and homogenized by hand with a 

teflon and glass homogenizer. The digest was centrifuged 

at 600xg for 10 minutes and the supernatant was decanted 
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and again oentrlfuged at 600zg for 10 minutes. This 

second supernatant then was decanted and centrlfuged 

twice at l4,000zg for 10 minutes* The mitochondrial 

pellet was suspended the first time In the homogenizing 

media without Nagarse, and finally was suspended In 

250 mM sucrose, 2 mM EDTA and 20 mM Trls, 7*4. All 

procedures were done at 4°c« 

Mitochondrial oxygen consumption was determined 

Immediately at 25°C In the air saturated media of Max 

et al. (35), which contained 15 mM KCL» 30 mM KH2PO4, 

25 mM Trls, 45 mM sucrose, 7 mM EDTA and 5 mM MgCl2* 

PH 7*4. State 4a respiration was recorded at the start 

of the assay when only substrate was added to the mito­

chondria and media, state 3 respiration then was 

Initiated with 320 uM ADF* State 4b respiration was 

recorded after the ADF that was added In State 3 was 

phosphorylated to ATP and the rate of oxygen consumption 

returned to that of State 4a. The Respiratory Control 

Index (RCI) was calculated by dividing the state 3 rate 

by the state 4b rate (10). The FtO ratio was calcu­

lated as described by Estabrook (22). The amount of ADF 

added In State 3 was determined speotrophotometrloally at 

259nm with 16.3 mM'^'cm"^ as the extinction coefficient (44)• 
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oxygen content of the media was determined as before. 

Assays with palmltoyloarnltlne and malate contained Z% 

BSA (53)» and those with pyruvate and malate had 0,2# 

BSÂ added to the media. Mitochondrial protein was deter­

mined by the method of Lowry et al. (33)* with the 

addition of 2 mg per tube of sodium deozycholate• 

Muscle enzyme activities 

Muscles for the determination of glycolytic enzyme 

activities were homogenized with a ground glass homo-

genlzer In 50 mM KCL» 20 mM Trls, 50 mM NaF, 10 mM 

dlthlothreltol, 2 mM EDTA and 1 mM ATP* IE 8.0. The 

homogenate was centrlfuged at 700zg for 10 minutes. The 

supernatant then was again centrlfuged for 30 minutes 

at 40,000ig and this second supernatant was used for the 

enzyme assays. 

Eezoklnase (EC 2.7.1.1) was assayed as outlined 

by Frank and Fromm (24) with a glucose-6-phosphate de­

hydrogenase coupled system. Fhosphofructoklnase 

(EC 2.7.1.11) was assayed by the method of Dunaway et al. 

(19) with a coupled system of aldolase, trlose phosphate 

Isomerase, and -glycerolphosphate dehydrogenase. Py­

ruvate kinase (EC 2.7.1.40) and lactate dehydrogenase 

(EC 1.1.1.27) were assayed as outlined by Bergmeyer (4). 
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The pyruvate kinase assay used a coupled lactate de­

hydrogenase system. 

Muscle hoffiogenates for mitochondrial enzymes were 

prepared with a ground glass homogenlzer In a media that 

consisted of 100 mM KCL« 5 mM MgCl2» 5 mM EDTA* 20 mM Trls, 

and 1 mM ATP, PH 7.4, The homogenate was divided Into 

two parts, one part was frozen and thawed 3 times In a 

dry Ice-acetone bath and centrlfuged at 600zg for 10 

minutes. The other part was centrlfuged at 600xg for 

10 minutes, decanted, and the supernatant again centrl­

fuged at lOOOxg for 10 minutes. The mitochondrial pellet 

was recovered by centrlfugatlon of the lOOOxg supernatant 

at l4,000zg for 10 minutes. The pellet was suspended 

In 250 mM sucrose, 20 mM Trls, and 2 mM EDTA, 1*1 7.4, 

and then frozen and thawed 3 times. Citrate synthase 

(EC 4.1.3.7) was assayed by the method of srere (48) 

with 5,5* dlthlobls(2-nltrobenzoate) as the sulfhydryl 

acceptor, succinate dehydrogenase (EC 1.3.99.1) was 

assayed by the method of singer and Kearney (45) with 

phenazlne methosulfate and 2,6-dlchlorolndophenol as 

the artificial electron acceptors, cytochrome oxidase 

(EC 1.9.3.1) was assayed by the method of Wharton and 

Tzagoloff (55), except that a trace amount of sodium 
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dlthlonate was tised to reduce the cytochrome c. The 

oxidation of reduced cytochrome C was followed at 550 nm 

In order to quantify enzyme activity. Mitochondrial 

enzyme activities were determined In both the 600xg super­

natant and the l4,000xg pellet. 

All steps In the preparation of muscles for enzyme 

assays were carried out at 4^0. All enzyme activities 

were determined at 25®C with a Gilford recording specto-

photometer. Protein was determined by the method of 

Lowry et al, as before. Enzyme activities were propor­

tional to enzyme concentration except for cytochrome oxi­

dase, In which activity was proportional to the first 

order rate constant. 

Whole homogenate muscle oxygen consumption 

Whole homogenate muscle oxygen consumption was 

assayed with a modification of the method of Hooker and 

Baldwin (26). The muscles were homogenized with a ground 

glass homogenizer in 175 mM KCL, 20 mM Trls, and 2 mM 

EDTA, ph 7.4 (1 ml per 100 mg). An aliquot was diluted 

with an assay mix to a final concentration of 87*5 mM 

KCl 5 mM MgClg, 40 mM KHgPO/,,. 1 mM EDTA, 5 mM Trls, and 

50 mM sucrose, pH 7*4. This contained 20 mg of muscle 

per ml. When exogenous substrates were used In the 
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assays, 10 mM NaP was added to prevent glycogen oxida­

tion and glycolysis (26). All procedures were carried 

out at 4°c« 

Oxygen consumption was determined In the air-satura­

ted muscle assay preparation at 2$°c after the addition 

of 2 mM ADP. Assays containing NaP only gave a linear 

resplratozry response (state 3) for a few minutes, since 

they could not oxidize their glycogen stores. When the 

respiration rate slowed, which indicated the endogenous 

substrates were exhausted, exogenous substrates were 

added. These substrates were 9 mM pyruvate or 50 uM 

palmitoylcarnitine, both with 1 mM malate « once all 

of the endogenous substrates were exhausted, we could be 

sure that the resumption and subsequent rate of state 3 

respiration was entirely dependent on the exogenous 

substrate, oxygen content of the final assay media was 

determined as before. 

Chemicals 

All substrates, hormones, and auxiliary enzymes 

were purchased from Sigma Chemical Co. (St. Louis, MO) 

except acetyl-COA was purchased from P-L Blochemicals 

(Milwaukee, WI)• Other chemicals were reagent grade and 

were purchased from Fisher Chemical Co. (Pair Lawn, NJ). 
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Statistics 

in vitro muscle oxygen consumption experiments 

were analysed by analysis of variance (ANCVA) at the 

Computer Center at lowa state University. Main effects 

Included phenotypes, hormone stimulation, and presence 

of substratet Each muscle type was analysed separately 

Significant main effects were Identified and means 

within these main effects were tested with the t-test 

(47). The pooled mean square error was used for the 

estimate of experimental error, other experiments 

were analysed with the t-test (4?). A probability of 

0.05 or less was taken to be statistically significant. 



www.manaraa.com

41 

RESULTS 

In vitro muscle oxygen consumption 

In vitro soleus muscle oxygen consumption in the 

ad libitum fed obese rat was not significantly different 

from its nonobese counterpart (Table 1). In vitro 

oxygen consumption was higher in the nonobese EDL when 

no substrate was added to the KRB media, but this is the 

only instance in the EDL where oxygen consumption was 

phenotypically different. Analysis of variance of in 

vitro oxygen consumption of the EDL muscle with pheno-

type and the presence of substrate as the main effects 

showed a significant main effect for phenotype (p<0.02). 

So, these data suggests that there was a phenotypic 

difference in in vitro EDL muscle oxygen consumption. 

However, it is unclear why rates were only significantly 

different when the assay did not contain added substrates. 

Rats were fasted for one day in order to deplete 

glycogen stores, lower insulin levels, and remove any 

possible diet-induced thermogenic effects on muscle 

oxygen consumption. The resulting in vitro muscle oxygen 

consumption rates were similar for the obese and non­

obese rats (Table 2). Table 3 combines rates from 

Table 1 and Table 2 to show specifically that the fasted 
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Table 1. In vitro muscle oxygen consumption In obese 
and nonobese zucker rats 

substrate Obese Nonobese 

S Ole us 

KHB (14) 3.35 + 0.25* (10) 3,89 + 0.29 

KHB with 5inM 
glucose 

(8) 3.73 + 0.32 (10) 3.38 + 0.29 

KHB with 0.5mM 
palmitate and 
1.5niM BSA 

(8) 3.06 + 

EDL^ 

0.32 (6) 3.30 + 0.37 

KHB (13) 3.66 + 0.25 (12) 4.46 + 0,26* 

KHB with 5mM 
glucose 

(14) 3.79 + 0.25 (12) 4.47 + 0.26 

KRB with O.SmM 
palmitate and 
1.5niM BSA 

(8) 3.85 + 0.32 (7) 4.05 + 0.35 

®Valuea are Mean ± SEM with number In group In par­
entheses. See "Materials and Methods" for details of the 
Incubations. Units are nmoles OgAmg protein x minute) . 

^ANOVA phenotype main effect p <0.02. 

"significantly different from obese rate at 
p<0.05 level. 
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Table 2. In vitro muscle oxygen consumption In fasted 
obese and nonobese Zucker rats 

Substrate obese Nonobese 

Soleus 

KRB (5) 3.44 + 0.59® (4) 4.14 + 0.66 

KBB with 5mM 
glucose 

(10) 3.12 + 0.42 (6) 3.51 + 0.54 

KRB with 0.5mM 
palmltate and 
l.SmM BSA 

(5) 4.47 + 

EDL 

0.59 (8) 3.78 + 0.47 

KRB (6) 3.75 + 0.54 (4) 4.89 + 0.66 

KRB with 5niM 
glucose 

(13) 4.37 + 0.37 (8) 3.92 + 0.47 

KRB with 0.5mM 
palmltate and 
1.5niM BSA 

(5) 5.68 + 0.59 (8) 5.27 + 0.47 

®Values are Mean + SEM with number In group In 
parentheses, see "Materials and Methods" for details 
of the Incubations, units are nmoles 02/(mg protein x 
minute). Animals were fasted for 24 hours. 
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animals responded to palmltate In both muscles with a 

significant Increase In oxygen consumption over ad 

libitum fed rates with palmltate (ANOVA* fed vs. fasted 

main effect p<0.02), comparison of the Individual means 

Indicates only the obese animals had a significant In­

crease In oxygen consumption. This difference In re­

sponse between the obese and nonobese rats was not sig­

nificant. The rates for In vitro oxygen consumption In 

fasted verses fed rats when either glucose or no exo­

genous substrates were added to the KRB media were not 

significantly different. 

The treatment of the rats with T^ significantly 

Increased soleus muscle oxygen consumption (ANOVAt hor­

mone main effect p< 0.001) (Table 4). Both phenotypes 

responded similarly. The EDL showed a T^-induced 

increase in oxygen consumption, but ANOVA indi­

cated the response was not significant. The two sub­

strates used in the T^ experiments had no significant 

effect on oxygen consumption rates in either muscle. 

The saline-injected controls in this experiment had 

similar In vitro muscle oxygen consumption rates in 

comparison to nonlnjected controls from other experi­

ments with identical conditions. Therefore, the saline 
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Table 3* In vitro muscle oxygen consumption of ad 
libitum fed and fasted obese and nonobese 
Zucker rats with pelmitate as the substrate 

Ad Libitum Fed pasted 

Soleus 

Obese (8) 3.06 + 0.32*' (5) 4,47 + 0.59* 

Nonobese (6) 3.30 + 0.37 (8) 3.78 + 0.47 

EDL 

Obese (8) 3.85 + 0.32 (5) 5.68 + 0.59* 

Nonobese (7) 4.05 + 0.35 (8) 5.27 + 0.47 

^Values are Mean + SEN with number of observations 
in parentheses. Muscles were inoul»ted for 30 minutes 
In KHB media which contained 0.5 mM palmitate and 
1.5 mM BSA. Oxygen consumption was then determined in 
the KRB media alone, see "Materials and Methods" for 
details of the incubations. Units aire nmoles 02/(ms 
protein x minute). Animals were fasted for 24 hours. The 
effect of ad libitum fed vs, fasted condition on oxygen 
consumption was significant in both muscles 
(ANOVA p<0,02). 

*Signifioantly different from ad libitum fed rate 
at p<0.05 level. 
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Table 4. Effect of triiodothyronine on In vitro muscle 
oxygen consumption In obese and nonobese 
Zucker rats 

T3 obese Nonobese 

5iaH Glucose as substrate 

Soleus 

+ (6) 4.71 + 0.40*'b (6) 4.48 + 0.40* 

(8) 3.73 + 0.32 (10) 3.38 + 0.29 

EDL 

+ (6) 5.10 + 0.40» (5) 3.74 + 0.44 + 

(14) 3.79 + 0.25 (12) 4.47 + 0.26 
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0*5mM palmltate plus 1>5pH BSA as substrate 

Soleus 

+ (6) 4.36 + 0.40* (6) 

(8) 3.06 + 0.32 (6) 

EDL 

+ (6) 4.80 + 0.40 (6) 

(8) 3.85 + 0.32 (7) 

®Values are Means + SEM with number of observations 
in parentheses, units are nmoles 02/(nis protein x minute). 

%ormone was injected i.p. for 3 days at 3.I % To 
per gram of body protein. Oxygen consumption was measured 
on the fourth day. See "Materials and Methods" for details 
of the incubations. Hormone treatment significantly 
increased oxygen consumption in the soleus muscles 
(ANOVA main effect for hormone p<0.001). 

"significantly different from non-T^ treated rate 
at p<0.05 level. 

^Significantly different from obese rate at p<0.05 
level. 

4,47 + 0.40* 

3.30 + 0.37 

4.84 + 0.40 

4.05 + 0.35 
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and nonsallne-lnjected controls which were otherwise 

similarly treated were combined Into one control group. 

Muscles Incubated In the presence of 0.1 u/ml Insulin 

and 5 mM glucose showed no difference In oxygen 

consumption compared to rates without Insulin In both 

phenotypes (Table 5). 

Regression of oxygen consumption on nonobese muscle 

weight In experiments when either glucose or no exogenous 

substrate were added to the KRB media resulted In a 

correlation coefficient of -0.21 for the EDL 

(y=0.025x + 5.42, n=22) and -0.493 for the soleus 

(y=*0.55 + 6.51# rv=20), These r values Indicate that only 

4^ and 24^ of the variation In oxygen consumption can 

be attributed to muscle weight In the EDL and soleus 

muscles, respectively. 

Mitochondrial oxygen consumption 

Mitochondrial respiration rates In state 4a, state 

4b, and state 3 were not significantly different In 

obese and nonobese rats (Table 6)• The RCI of all prep­

arations Indicated that they contained highly coupled 

mitochondria. 

Whole homogenate muscle oxygen consumption 

Whole homogenate muscle oxygen consumption was 
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Table 5* Effect of insulin on In vitro muscle oxygen 
consumption of obese and nonobese zucker rats 

Insulin Obese Nonobese 

Fed Ad libitum 
Soleus 

+ (5) 3.17 + 0.47* (5) 3.82 + 0.47 

- (8) 3.73 ± 0.32 

EDL 

(10) 3.38 + 0.29 

+ (5) 3.43 + 0.47 (5) 4.14 + 0.47-

(14) 3.79 + 0.25 

Fasted one 
soleus 

(12) 

Day 

4.47 + 0.26 

+ (6) 3.77 + 0.43 (7) 4.01 + 0.40 

- (10) 3.12 + 0.42 

EDL 

(6) 3.51 + 0.54 

+ (6) 4.38 + 0.43 (11) 3.70 + 0.32 

- (13) 4.31 + 0.37 (8) 3.92 + 0.47 

Values are Means + SEH with number of observations 
In parentheses. Units are nmoles Op/fmg protein x minute). 
Muscles were preincubated with 0.1 u/ml insulin and 
5 mM glucose in KfiB media for 30 minutes and oxygen con­
sumption was measured in the same media. See "Materials 
and Methods" for details of the incubations. 
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Table 6. Mitochondrial respiration and degree of 
coupling in obese and nonobese Zucker rats 

State 4a state 3 state 4b RCI PiO 

50m Palmitoylcarnitine plus ImM Malate 
Soleus 

Obese 9.02+0.6?* 126+12 14.5+1,7 9.3+0,9 2,98+0.05 

Nonobese 7.80+0.48 13^9 11.6+0.9 11.9+1.2 3.03+0.12 

EDL 

Obese 6.82+0,96 74.8+7,4 12,7+ 0,6 6,21+0,57 3.12+0.06 

Nonobese 6,91+0,63 86,0+6.2 10.5+0.7 8.31+0.63* 3.27+0.08 

9mM pyruvate plus ImM Malate 

Soleus 

Obese 8.05+0.74 119+13 11.5+0,8 10,3+0,7 3,19+0.05 

Nonobese 7.16+0.53 120+11 10.5+0.5 11.5+0.8 3.33+0.09 

EDL 

Obese 6.79+0.57 114+14 10.7+0.4 10.9+1.4 3.41+0.10 

Nonobese 7.37+0.68 132+7 10.4+0.6 12,1+0,7 3,41+0,10 

Values are Means + SEN, Assays with palmitoyl­
carnitine had n=8 observationst and those with pyruvate 
had n=6 observations per group. Units are nAtoms oAmg 
mitochondrial protein x minute) except for the BCI and PiO 
which are unitless, 

* 
Significantly different from obese rat at p<0,05 

level. 
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similar for obese and nonobese rats with either py­

ruvate plus malate or palmltoylcarnltlne plus malate 

as the substrate (Table 7)• Note that the NaP used to 

Inhibit glycogen oxidation had no effect on state 3 

respiration when pyruvate plus malate was used as the 

substrate. The effect of NaP was not tested with 

palmltoylcarnltlne because there was not enough muscle 

homogenate to do those assays. These whole homogenate 

data were expressed on a wet weight basis so we could 

use all the muscle for the assays, since the per­

centage of wet weight of muscle as protein was similar 

for obese and nonobese rats (Table 10), we felt this 

was a reasonable way to express the data. 

Glycolytic and mitochondrial enzyme rates 

overall, glycolytic enzyme activities were similar 

In obese and nonobese rats (Table 8)• Exceptions 

Included an Increased hexoklnase activity In the non­

obese EOL and Increased phosphofructoklnase and lactate 

dehydrogenase activities In the obese soleus. Mito­

chondrial enzyme activities for citrate synthase, 

succinate dehydrogenase, and cytochrome oxidase did not 

differ phenotyplcally (Table 9)* 
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Table 7. Whole homogenate oxygen consumption of 
muscles from obese and nonobese Zucker rats 

Media Obese Nonobese 

Soleus 

Media 397 + ^5® 403 ± 42 

Media with 9mM 733 + 2?** 730 + 33** 
pyruvate plus 
ImM malate 

Media with 9mM 727 + 60 719 ± 44 
pyruvate, ImM malate, 
and lOmM NaF 

Media with 50uM pal- 580 + 42* 603 + 55* 
mltoylcarnltlne, 
ImM malate, and 
lOmM NaF 
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EDL 

Media 4^6 + 4? 488 + 49 

Media with 9mM 556 + 42 557 + 51 
pyruvate plus 
ImM malate 

Media with 9mM 52? + 4l 4?? + 44 
pyruvate, ImM 
malate, and lOmM NaF 

Media with 50uM pal- 339 + 23* 311 + 42* 
mltoylcarnltlne, ImM 
malate, and lOmM NaF 

^Values are Means + SEM for 6 observations per group* 
Units are nmoles 02/(gram wet weight x minute). 

"significantly different from the rate of the media 
alone at p <0.05 level. 

**SlgnlfIcantly different from the rate of the media 
alone at p <0.01 level. 
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Table 8. Glycolytic enzyme activities In muscles from 
obese and nonobese Zucker rats 

Hezoklnase phospho-
fructo-
klnase 

pyruvate 
Kinase 

Lactate 
Dehydro­
genase 

soleus 

Obese (8)16.1+0.9* (8)214+23 (8) 581+37 (8)1780+110 

Nonobese (8)14.8+0.6 (8)155+14* (8) 500+29 (8)1470+60* 

EDL 

Obese (8)18.9+0.9 (8)636+39 (8)1950+140 (8)4370+530 

Nonobese (9)22.4+1.1* (9)629+35 (9)1840+150 (9)4540+550 

^values are Means + SEH with number of observations 
In parentheses, units are nmoles/(mg protein In 40,000%g 
fraction x minute). 

"significantly different from obese rate at p <0.05 
level. 

Muscle and "empty carcass" weight 

Soleus and EDL muscles weighed significantly less 

In the 6 week old obese rat (Table 10), but this pheno-

typlc difference In muscle weights was not generalized 

over the entire carcass. "Empty carcass" weight and pro­

tein, which were used as measures of total muscle mass, 

were similar In obese and nonobese rats (Table 11). 
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Further, the percentage of muscle weight which was pro­

tein in the "empty carcass" and in the soleus and EDL 

muscles were similar for the obese and nonobese rats. 
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Table 9* Mitochondrial enzyme activities In muscles 
of obese and nonobese zuoker rats 

Citrate 
synthase 

succinate cytochrome 
Dehydrogenase oxidase 

Obese 701 + 40 

Nonobese 635 + 3^ 

Obese 391 + 38 

Nonobese 390 + 29 

Obese 492 + 43 

Nonobese 438 + 32 

Obese 362 + 26 

Nonobese 392 + 35 

Soleus 
6OCXS supernatant 

28.0 + 1.1 

29.2 j. 1.2 

l4,000xs Mitochondrial 

161 + 7 

164 + 5 

EDL 
600xs Supernatant 

16.9 + 2.2 

20.3 + 2.0 

l4,000xg Mitochondrial 

14.8 + 1.9 

17.5 + 1.7 

Pellet 

167 + 13 

176 + 21 

9.6 + 1.3 

12.0 + 1.4 

Pellet 

132 + 7 

161 + 12 

236 + 25 

219 + 31 

Values are Means + SEM for n;=8 animals. Units are 
nmoles/ (mg protein x minute). 
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Table 10. Muscle wet weight and muscle protein as a 
percentage of wet weight In obese and nonobese 
Zucker rats 

Wet weight (mg) 
fmg protein \ ,«« 
\mg wet weight J 

Obese 

Nonobese 

Obese 

Nonobese 

Soleus 

(18) 42 + 1* 

(17) 51 i 1* 

(18) 44 + 1 

(18) 51 + 1** 

EDL 

(17) 21.0 + 0.4 

(17) 21.2 + 0.4 

(17) 22.4 + 0.4 

(18) 21.8 + 0.5 

^Values are Means + SEN with number of observations 
In parentheses. ~ 

level. 
Significantly different from obese rat at p<0.01 
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Table 11. Live weight and "empty carcass" analysis of 
obese and nonobese zucker rats 

Obese Nonobese 

Body weight (grams) (10) 177+7* 145+3* 

"Empty carcass" weight 
(grams)D 

(10) 57.9+2.2 59.1+1.6 

"Empty carcass" protein 
(grams) 

(10) 9.32+0.46 9.72+0.38 

Lipid free "empty 
carcass" weight (grams) 

(10) 53.4+2.1 57.2+1.7 

% "empty carcass" pro­
tein on a lipid free 
"empty carcass" wet 
weight basis 

(10) 17.^0.4 17.0+0.5 

% "empty carcass" 
protein on a lipid free 
"empty carcass" dry 
weight basis 

(9) 70.5+2.4 76.2+3.0 

^Values are Means + SEM with niimber of observations 
In parentheses. "" 

^"Empty carcass" Is defined as what remains after 
the head, tall, paws, pelt, viscera, and visible fat 
deposits are removed. What remains Is primarily muscle 
tissue, connective tissue, and bone. 

"significantly different from obese values at 
p <0.01 level. 
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DISCUSSION 

In vitro muscle oxygen consumption was similar 

phenotyplcally In all oases except for the increased 

rate in the EDL muscles from ad libitum fed nonobese rats. 

The fact that the majority of in vitro rates were similar 

between the obese and nonobese rats indicates there prob­

ably is no overall phenotyplc difference in muscle oxygen 

consumption. Treatment with T^ in vivo significantly 

Increased muscle oxygen consumption in the soleus, and 

it effected both phenotypes equally. This effect of 

To on muscle oxygen consumption has been 'well-documented 
J 

(54). Insulin in vitro had no effect on muscle oxygen 

consumption. Ruderman et al. (42) have shown that in­

sulin Increases oxygen consumption in the perfused rat 

hlndquarter, but Kemmer et al, (31) did not find this 

same effect in a similar hlndquarter perfusion. Crettaz 

et al. (15) also did not demonstrate an effect by in­

sulin on muscle oxygen consumption with in vitro muscle 

strips. Insulin appears to have no effect on oxygen 

consumption in Isolated muscles, and it is unclear 

whether it has an effect on perfused hlndquarter oxygen 

consumption. 

Soleus and EDL muscles were chosen for this study for 
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two reasons* These muscles are thin enough to allow 

for adequate diffusion of oxygen and substrate into them. 

The regression of oxygen consumption on muscle weight 

supports this conclusion. Over 75% and 95% of the vari­

ation in muscle oxygen consumption was due to factors 

other than muscle weight in the soleus and EDL muscles, 

respectively* Furthermore* in vitro oxygen consumption 

rates of these muscles equalled or exceeded those for 

perfused hindquarters (42, 54), muscle strips (15). 

or 30-40 mg soleus muscles (38). The maximum muscle 

weight used in this study was 64 mg. We found, however, 

that soleus and EDL muscles that weighed more than 100 mg, 

or muscles that were not stretched across a wire clip, 

had significantly lower oxygen consumption rates than 

the muscles in this study (data not shown)• These 

larger muscles, or unstretched muscles, are not suitable 

for in vitro incubations* 

soleus and EDL muscles also were chosen for this 

study because they are models for slow and fast twitch 

muscles, respectively* The EDL muscle is composed of 

both oxidative and glycolytic muscle fibers while the 

soleus muscle is almost wholly composed of oxidative 

muscle fibers (1). The greater glycolytic capacity of 
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the EDL muscle Is evident when glycolytic enzyme activ­

ities are compared. Activities for phosphofructoklnase 

and pyruvate kinase, which are considered rate-llmltlng 

for glycolysis (40), are three times higher In the EDL 

than In the soleus muscle. 

In vitro oxygen consumption was similar or greater 

for the EDL when compared to the soleus muscle in this 

study, but this may not be true in vivo. Blood flow 

In the rat is generally three times higher in slow 

twitch muscles when compared to fast twitch (27) . 

Blood flow is the metabolic throttle for muscle oxygen 

consumption (6), especially in small animals (25). This 

difference in blood flow would probably give the soleus 

muscle a higher in vivo oxygen consumption in comparison 

to the EDL muscle. 

A lack of a substrate effect on muscle oxygen con­

sumption, as demonstrated in this study, is consistent 

with the work of others (3» l6, 38). The majority of 

palmltate taken up by the muscle in vitro or in vivo is 

stored in lipid pools and little is oxidized immediately 

when muscles are at rest (3, l6). However, In this study 

palmltate did stimulate oxygen consumption in muscles 

from fasted rats, it can be presumed that those muscles 
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from fasted rats were depleted of glycogen and partially 

depleted of lipid stores. Therefore, the muscles relied 

on exogenous substrates to a greater degree than Is usual 

In In vitro preparations. It Is not clear why these 

muscles from fasted rats Increased their oxygen consump­

tion over ad libitum fed rates with palmltate as the sub­

strate. Glucose also Is not oxidized to any significant 

extent by the muscle In vitro since It Is not a major 

fuel for muscles at rest (12). Glucose utilization does 

Increase If an In vitro muscle preparation Is stimulated 

to contract (12). 

State 3 mitochondrial respiration rates suggest that 

In both muscle types there Is no phenotyplc difference 

In muscle oxidative capacity, whole homogenate oxygen con­

sumption rates suggest there Is no phenotyplc difference 

In mitochondrial number In the EDL and soleus muscles. 

Furthermore, similar oxygen consumption rates with pal-

mltoylcarnltlne for obese and nonobese muscles In both 

mitochondrial and whole homogenate fractions Indicate that 

there Is no phenotyplc difference In 0-oxldatlon In either 

muscle type. 

Mitochondrial enzyme activities further Indicate 

that there Is probably no phenotyplc difference In 
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muscle oxidative capacity* In vitro enzyme activities as 

such do not necessarily represent in vivo activities. 

However, since mitochondrial respiration rates and enzyme 

activities lead to the same conclusion, these enzyme 

activities probably do accurately reflect in vivo muscle 

oxidative capacity. 

The work of crettaz et al, (15) with in vitro 

soleus muscle strips in 6 week old zucker rats has shown 

no phenotypic difference in glycolytic flux, glycogen 

synthesis, 2-deoxy glucose uptake, and insulin sensitivity. 

We have further shown that glycolytic capacity, as de­

termined from glycolytic enzyme activities, was similar 

phenotyplcally. Additionally, HcNamara et al. (36) have 

shown that soleus muscles in these 6 week old rats oxi­

dize ^^C-palmitate to at similar rates. Kemmer 

et al. (31) also have demonstrated that oxygen consump­

tion of the perfused hlndquarter of approximately 20 week 

old obese and nonobese rats is not phenotyplcally different. 

The work of others, in conjunction with the studies re­

ported here, indicate that no significant phenotypic 

difference in oxygen consumption or oxidative capacity for 

major muscle fuels exists in the muscles from young obese 

and nonobese Zucker rats. 
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"Empty carcass" weight data further Indicate a 

lack of a difference In muscle mass between lean and 

obese rats at 6 weeks of age. The data of Radcllffe 

and Webster (39) demonstrate a significant difference 

In obese and nonobese "empty carcass" weights at 10 weeks 

of age In males, but not In females. The absence of 

a lower female "empty carcass" weight at 10 weeks of 

age suggests that, because both sexes exhibit a similar 

obese syndrome, the lower muscle mass In the males Is 

probably not a major factor In the etiology of Its 

obesity. 

Muscle metabolism, as stated previously, Is to some 

extent different In obese and nonobese rats. The obese 

rat has more nitrogen In Its urine and Is less efficient 

at converting dietary protein Into body protein. This 

Inefficiency, as shown recently by castonguay et al. (8) 

does not drive the hyperphagla of the obese rat as had 

been previously suggested (39)* Furthermore, these 

differences In muscle metabolism must be minor ones with 

respect to the factors which are responsible for the 

obesity In the Zucker rat since this obese rat will syn­

thesize lipid even at the expense of the growth of lean 

body mass when Its calorie Intake Is restricted (5, 13), 
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The obese animal cannot properly apportion its dietary 

intake in order to achieve balanced growth and this defect 

surely transcends any small differences in muscle metab­

olism seen in the obese rat. Differences in muscle 

metabolism in the Zucker rat, then, whether either 

primary or secondary in nature, do not appear to con­

stitute an important early etiological factor for the 

obese state or contribute to the phenotypic difference 

in metabolic efficiency. It is possible, though, that 

muscle may contribute to the later phases of the obesity 

syndrome in the male rat, especially in terms of the 

defect in its growth as the obese rat ages. 
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PAPER II. THE EFFECT OP TREADMILL TRAINING 

ON THE OXIDATIVE CAPACITY AND GROWTH OP MUSCLES 

FROM YOUNG OBESE AND NONOBESE ZUCKER RATS 
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ABSTRACT 

This study was designed to determine If treadmill 

training could reverse the lower rate of muscle accre­

tion In the male obese Zucker rat and expose a possible 

latent defect In muscle oxidative capacity. Muscle mass 

was significantly lower at 12 weeks of age In the sedentary 

obese rat as compared to the nonobese rat. Exercise sig­

nificantly decreased muscle mass and body weight similarly 

In both phenotypes, but It decreased food consumption and 

body fat to a greater extent In the obese than In the non-

obese rats. Activities of citrate synthase (CS)* succinate 

dehydrogenase and cytochrome oxidase (CYTOX) In the soleus, 

extensor dlgltorum longus (EDL). and gastrocnemius muscles 

were generally similar In obese and nonobese rats In both 

the sedentary and maximally-exercised state. Exceptions 

were significantly higher rates of CS in the 800xg super­

natant of the EDL and soleus muscles from sedentary obese 

rats. Rates of CYTOX were significantly higher in the 

l4,000xg pellet in the EDL and soleus muscles from those 

same rats. In addition, the soleus muscles from the 

exercised nonobese rats had higher CYTOX activities in the 

l4,000xg pellet. Mitochondrial respiration rates were 

phenotypically similar, and were significantly decreased 
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by exercise only In the nonobese EDL muscles. Taken 

together these data Indicate that oxidative capacity per 

unit of muscle Is not defective In the obese Zucker rat 

In either the sedentary or exercised states. Further, 

exercise does not reverse the defect In muscle mass 

accretion In the obese rat. The data also Indicate that 

total muscle oxidative capacity Is lower In the obese 

due to lower muscle weights. This may contribute to the 

energy efficiency, but It Is not a primary lesion. 
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INTRODUCTION 

The obese Zucker rat has hyperlnsullnemia (6), hyper­

lipemia (5)» increased rates of lipogenesis and lipid accre­

tion (4, 11), and an Increased metabolic efficiency (26) in 

comparison to the nonobese rat. Altered aspects of protein 

metabolism in the obese rat Include a decreased rate of pro­

tein accretion (l4), an Increased level of nitrogen in 

the urine (6), stunted growth of certain skeletal muscles 

(29 ), and an Increased oxidation of protein for energy needs 

(l4). This obesity syndrome is not reversed by food restric­

tion (4, 9)f maintenance of normolnsullnemla (6), or 

t r e a d m i l l  t r a i n i n g  ( 1 1 ,  3 7 ) .  

We reported previously that muscle mass, in vitro 

muscle oxygen consumption, and muscle oxidative capacity is 

similar in obese and nonobese male rats at 6 weeks of age 

(36 ). In the 10 week old male obese Zucker rat, Radcliffe 

and Webster (27 ) demonstrated that muscle mass is signifi­

cantly lower than in the nonobese rat. Part of this in­

vestigation was to determine whether muscle oxidative ca­

pacity was compromised in this older animal, concomitant 

with the decreased muscle mass. Muscle tissue could be 

contributing to the increased metabolic efficiency of the 

obese rat by virtue of its decreased mass and possible 
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decreased oxidative capacity* 

We also wondered whether a latent phenotyplc differ­

ence existed In muscle oxidative capacity which was not 

evident In the sedentary state. Treadmill training In­

creases muscle oxidative capacity In rats (1, 20), and 

this stress may expose a possible latent defect In muscle 

oxidative capacity In the obese rat. The stress of tread­

mill training also has been shown to decrease food con­

sumption and weight gain In male rats In comparison to 

sedentary controls (12). The purpose of this study then 

was to determine whether a phenotyplc difference In muscle 

oxidative capacity existed In 12 week old sedentary and 

exercised male Zucker rats. Further, we wanted to quantify 

the effect of exercise on muscle mass, body weight, and 

food consumption In the obese male rat. 
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MATERIALS AND METHODS 

Animals 

Five week old male obese and nonobese Zucker rats were 

obtained from the breeding colony at lowa state University• 

The animals were fed a commercial rat ration (Ralston-Purlna, 

St. Louis, MO) ad libitum and maintained at 24°C and 50^ 

relative humidity. They were housed In wire cages with ex­

ternal food hoppers on a 12 hour light-dark cycle, weekly 

food consumption was determined for each rat. crumbs and 

spilled food were collected every other day, weighed weekly, 

and subtracted from the apparent food consumption. 

Treadmill training 

Treadmill training of rats began at 5 weeks of age and 

lasted for 7 weeks. Initially, the rats ran 7 days per 

week at 10 meters per minute for 15 minutes up an 8° Incline, 

one group of obese and nonobese rats, designated pair-ex, 

were palr-exerclsed to the capacity of the obese group. 

Speed and duration were gradually Increased until during 

the last week of training the pair-ex group was running 20 

meters per minute for 90 minutes up an 8° incline. A second 

group of nonobese rats, designated LEX, were exercised to 

their capacity, speed, duration, and incline were gradually 

Increased and during the last week these nonobese rats were 

running 24 meters per minute for 90 minutes up an 11° Incline. 
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When necessary, both groups of rats were prodded with card­

board strips to keep them running. Electric shock was used 

sparingly. Six rats had to be removed from the experiment, 

one obese and two nonobese rats In the exercise group were 

removed because they were Injured by the treadmill, and three 

obese sedentary controls because they developed respiratory 

Infections. All exercised animals were rested 24 hours before 

they were sacrificed. 

Carcass analysis 

Each rat was decapitated, skinned, and eviscerated. 

Then the paws, all visible fat deposits, and the tall were 

removed. The remaining "empty carcass" was weighed and frozen. 

This frozen carcass was homogenized In distilled water, and 

a portion was lyophlllzed. The lyophlllzed samples were 

weighed and portions (approximately 250 mg) were taken for 

protein determination. These portions were digested at 420°c 

In 20ml of concentrated sulfuric acid which contained 0.3^ 

selenium dioxide. The ammonia that remained In the digest 

was determined spectrophotometrlcally by the method of chaney 

and Marbach (8). The nitrogen concentration was multi­

plied by 6.25 to yield the protein concentration. 

To determine body fat, the organs, skin, and dissected 

fat from each animal were combined and homogenized In dis­

tilled water. A weighed portion was lyophlllzed, extracted 

with chloroform:methanol (2:1 v/v), filtered over NagSO^, 
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and evaporated. The head and "empty carcass" were not ex­

tracted. Body fat was subtracted from body weight to cal­

culate "fat free" body weight. Liver protein was assayed 

by the biuret method after the liver was homogenized in dis­

tilled water (22). Bovine serum albumin (BSA) was used as 

the standard. 

Mitochondrial oxygen consumption 

Soleus, extensor digitorum longus (EDL)» and white por­

tions of the medial gastrocnemius muscles were rapidly dis­

sected and minced. These muscle samples were digested for 

7 minutes in 100 mM sucrose KCl. 50 mM tris (hydroxy-

methyl) aminomethane (Tris), 10 mM ethylenediaminetetraacetic 

acid (EDTA)I 5 mM MgCl2» 1 mM ATP, and 1^ B8A, which con­

tained 0»5% Nagarse (34). The concentration of muscle in 

the digest was 10%, The digest was then diluted to twice 

its volume in homogenizing media without Nagarse and homog­

enized by hand with a teflon and glass homogenizer. The 

digest was centrifuged at 300xg for 10 minutes and the 

supernatant was decanted and again centrifuged at BOOxg 

for 10 minutes. This second supernatant then was decanted 

and centrifuged twice at l4,000xg for 10 minutes. The 

mitochondrial pellet was suspended the first time in the 

homogenizing media without Nagarse, and finally was sus­

pended in 250 mM sucrose, 2 mM EDTA and 20 mM Tris, pH 7.4. 

All procedures were done at 4°c.  
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Mitochondrial oxygen consumption was determined Immedi­

ately at 25°c In the air-saturated media of Max et al. (25) 

which contained 15 mM KCl, 30 mM KH2F02^t 25 mM Trls, 45 mM 

sucrose, 7 mM EDTA and 5 mM MgCl2 and 0,2% BSk, pH 7.4. 

Initially 125 UM ADP was added to exhaust endogenous sub­

strates. When oxygen consumption returned to basal levels 

a mixture of 9 mM pyruvate plus 1 mM malate was Injected 

Into the sample through a port In the oxygen electrode cham­

ber. The resulting State 4b respiration rate was recorded. 

State 3 respiration was then Initiated with 320 uM ADF. 

State 4b respiration was recorded again after the ADF added 

In state 3 was phosphorylated to ATP. Only one substrate 

was assayed because the amount of mitochondrial material 

from each muscle was limited. 

The Respiratory control Index (RCI) was calculated by 

dividing the State 3 rate by the state 4b rate (7)o The 

PjO ratio was calculated as described by Estabrook (15). The 

amount of ADP added In State 3 was determined spectrophoto-

metrlcally at 259 nm with l6.3 mM"^*cm~^ as the extinction 

coefficient (30). Oxygen content of the media was determined 

by the method of Robinson and Cooper (28). Mltochrondlal 

protein was determined by the method of Lowry et al. (24), 

with the addition of 2 mg per tube of sodium deoxycholate. 

Muscle enzyme activities 

Soleus, EDLi and white portions of the medial gastroc-
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nemlus muscles were rapidly dissected. Muscle homogenates 

for mitochondrial enzymes were prepared with a ground glass 

homogenlzer In a media that consisted of 100 mM KCl, 5 mM 

EDTA, 5 mM MgClg» 20 mM Trls, and 1 mM ATP. ph 7.4. The 

homogenate was divided Into two parts, one part was fro­

zen and thawed 3 times In a dry Ice-acetone bath and cen-

trlfuged at BOOig for 10 minutes. The other part was 

centrlfuged at BOOxg for 10 minutes, decanted, and the 

supernatant again centrlfuged at BOOxg for 10 minutes. 

The mitochondrial pellet was recovered by cantrlfugatlon of 

the BOOxg supernatant at l4,000xg for 10 minutes. The 

pellet was suspended In 250 mM sucrose, 20 mM Trls, and 

2 mM EDTAI ph 7.4, and then frozen and thawed 3 times as 

before. Both enzyme fractions were stored at -80°C and 

assayed within 2 weeks. A quantitative Isolation of 

mitochondrial enzymes In the l4,000xg pellet Is not 

possible with differential centrlfugatlon of muscle 

homogenates (1). The BOOxg fraction, therefore, was used 

as a measure of total enzyme activity In the muscle. 

Citrate synthase (EC 4.1.3.7) was assayed by the 

method of srere (33) with 5t5' dlthlobls (2-nltrobenzoate) 

as the sulfhydryl acceptor, succinate dehydrogenase 

(EC 1.3.99*1) was assayed by the method of Singer and 

Kearney (31) with phenazlne methosulfate and 2,6-dlchloro-
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Indophenol as the artificial electron acceptors. Cyto­

chrome oxidase (EC 1,9*3*1) was assayed by the method of 

Wharton and Tzagoloff (39)» except that a trace amount 

of sodium dlthlonate was used to reduce the cytochrome c. 

The oxidation of reduced cytochrome c at 550 nm was 

followed In order to quantify enzyme activity. 

All steps In the preparation of muscles for enzyme 

assays were carried out at 4°c. All enzyme activities 

were determined at 25°C with a Gilford recording spec­

trophotometer. protein was determined by the method of 

Lowry et al. (24) as before. Enzyme activity was propor­

tional to enzyme concentration except for cytochrome 

oxidase, In which activity was proportional to the first 

order rate constant. 

Chemicals 

All substrates, hormones, and enzymes were purchased 

from Sigma Chemical Co, (St. Louis, MO), except acetyl-COA 

was purchased from P-L Biochemlcals (Milwaukee, WI). Other 

chemicals were reagent grade and were purchased from Fisher 

Chemical Co. (Fair Lawn, NJ), 

Statistics 

Data were analyzed with a 2x2 analysis of variance at 

the lowa state University computer Center, Phenotype and 

exercise were the main effects. Significant main effects 
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and Interactions were Identified and means within those 

main effects were compared with the t-test (32), The 

pooled mean square error was used as the estimate for 

experimental error. For many parameters, such as body 

weight, the mean values were similar for the LEX and the 

nonobese palr-ex animals. For those parameters, just one 

2x2 ANOVA was used, which contained the sedentary controls 

and the palr-ex animals. When the LEX and nonobese 

palr-ex means differed significantly, two ANOVA were used. 

One 2x2 ANOVA was used for the palr-ex and sedentary 

animals, while another 2x2 ANOVA combined the sedentary 

animals with the obese palr-ex animals and the LEX group. 

This latter ANOVA represented animals who were exercised 

to their capacity, and was primarily used to Identify 

phenotype x exercise Interactions. 
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RESULTS 

Body weight and food consumption 

The obese rats, whether exercised or not, weighed 

significantly more than the nonobese (Table 1). Exercise 

significantly decreased final body weight similarly In both 

phenotypes. The obese rats consumed significantly more food 

during the seven week experimental period than the nonobese 

(Table 2). Exercise significantly decreased food consumption 

in both phenotypes, but the effect was greater on the obese 

rats (ANOVA phenotype x exercise p<0.01). 

Body composition 

"Empty carcass" weight and "empty carcass" protein were 

significantly lower in the obese than in the nonobese rats 

(Table 3)» Exercise significantly decreased both parameters 

similarly in the obese and nonobese rats. Body lipid was 

significantly greater in the obese rats in comparison to the 

nonobese (Table 3). Exercise significantly decreased body 

lipid in both phenotypes, but the effect was greater on the 

obese rats (ANOVA phenotype x exercise p-<0.001). "Fat free" 

body weight, which Includes water, was similar for obese and 

nonobese rats (Table 3)• Exercise significantly decreased 

"fat free" body weight in a similar fashion in both phenotypes. 
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Table 1. Body weight of exercised and sedentary obese and 
nonobese Zucker rats 

Condition* 5 weeks of age 12 weeks of age 

obese 

Sedentary (7) 145 + 7% 446 + 8 

Fair-Ex (9) 144 5 

Nonobese 

362 + 7^ 

Sedentary ( 1 2 )  113 + 3* 316 + 4* 

Fair-Ex (11) 110 + 4* 263 + 8* » + 

LEX (6) 111 + 3* 252 + 7*.+ 

^Sedentary refers to rats who received no tread­
mill training. Fair-Ex refers to a group of obese and 
nonobese rats who were exercised to the capacity of 
the obese group. LEX refers to a group of nonobese rats 
who were exercised to their capacity. Treadmill training 
began at 5 weeks of age and ended at 12 weeks of age. 
See "Materials and Methods" for details. 

Values are Means + SEM with number of observations 
in each group in parentEeses. Units are grams. 

"significantly different from obese rat at p <0,01 
level. 

"•"Significantly different from sedentary group at 
p <0.01 level. 
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Table 2. Food consumption of exercised and sedentary obese 
and nonobese Zuoker rats 

Obese Nonobese p 

Sedentary (7) l606 + 39® (12) 1093 + 14 <0,01 

Falr-Ex (9) 1385+20* (11) 1001+23* < 0.01 

LEX (6) 993 + 21* 

^Values are Means + SEK with number of observations 
In parentheses. Units are grams of food eaten during the 
seven week training period. 

"significantly different from sedentary group at 
p <0.01 level. 

organ weights 

The obese rats had significantly heavier livers and 

these livers contained significantly more protein than those 

of the nonobese (Table 4), Liver protein as a percentage 

of liver wet weight was similar phenotyplcally for the 

sedentary groups and for the animals exercised to their 

capacity. Exercise significantly decreased liver weight 

and liver protein in the obese rats, but not In the non­

obese, This phenotyplc difference In liver weight in 

response to exercise was significant (ANOVA phenotype x 

exercise p<c0.02). 
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Table 3* Carcass analysis of exercised and sedentary obese 
and nonobese Zucker rats 

Sedentary palr-Ex LEX 

Obese 

Nonobese 

P 

Obese 

Nonobese 

P 

Obese 

Nonobese 

P 

"Empty carcass" weight^ 

(7)119.3+3.0^ (9) 99.9+2.9**.++ 

(11)146.3+3.3 (12)125.9+4.1** (6)117.8+4.1**'++ 

<0.01 <0.01 

"Empty carcass" protgln 

(6) 22.9+1.0 (7) 19.4+1.0*'+ 

(10) 28.3+1.2 (10) 24.3+1.5* (5) 24.3+1.2*'+ 

<0.05 <0.05 

Body lipid 

(7)155.6+6.6 (9)116.9+2.8**.++ 

(9) 16.7+1.2 (8) 11.3+1.3** (6) 8.7+1.1**'++ 

< 0 . 0 1  < 0 . 0 1  
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"Fat free" body weight 

Obese 

Nonobese 

(7)286 +6 (9)246 +6** 
M.M. ** 

(9)296 +5 (8)255 +7 (6)24] +7 

P NS NS 

®"Empty carcass" weight Is defined as what remains 
after the head, tall, paws, pelt, viscera, and visible 
fat deposits are removed. What remains Is primarily 
muscle tissue, connective tissue, and bone. 

Values are Means + SEW with number of observa­
tions In parentheses. Units are grams. 

"significantly different from sedentary group at 
p <0.05 level. 

**Slgnlflcantly different from sedentary group at 
p<0.01 level. 

"•"Obese palr-ex vs. LEX differ significantly at 
p <0.05 level. 

++Obese palr-ex vs. LEX differ significantly at 
p <0.01 level. 
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Heart weight was significantly greater In the obese 

than In the nonobese rats (Table 4). Exercise decreased 

heart weight significantly In the nonobese, but had no 

effect on heart weight in the obese rat. when heart 

weight was expressed on a "fat free" body weight basis, the 

significant effect of exercise on It was evident in both 

phenotypes. Heart weight ratios were significantly in­

creased in the obese and nonobese exercised rats and 

the effect was significantly greater in the obese animals 

(ANOVA phenotype x exercise p <.0.001). 

Soleus and EDL muscle weights were significantly lower 

in the sedentary obese than in the sedentary nonobese rats 

(Table 5). Exercise reduced EDL and soleus muscle weights 

in both phenotypes, with the exception of the soleus 

muscles from the nonobese rats. Gastrocnemius muscle 

weights were not listed because only a sample of this muscle 

was dissected. 

Muscle enzyme activities 

Citrate synthase activity in the SOOxg supernatant of 

the soleus muscle was greater in the sedentary obese than 

in the nonobese rats. Exercise increased citrate synthase 

activity and the maximum exerclsed-lnduced rates were 

phenotypically similar (Table 6). Mitochondrial citrate 

synthase activity in the soleus muscle was phenotypically 



www.manaraa.com

Table 4. organ weights of exercised and sedentary obese and 
nonobese Zucker rats 

Sedentary pa)r-Ex LEX 

Liver weight (g) 

Obese 

Nonobese 

P 

Obese 

Nonobese 

P 

obese 

Nonobese 

P 

(7)17.4+0.7^ 

(8)10.2+0.4 

<0.01 

(8)12 .3+0.2  

(8)8.97+0.42 

<0 .01  

**,++ 

(6)9.04+0.19 
,++ 

(6)1.81+0.06+ 

Liver protein (g) 

(7)3.74+0.32 (8)2.43+0.20**.+ 

(7)2.14+0.11 (8)2.08+0.16 

<0.01 NS 

(g protein/g liver) 100 

(7)21.8+1.6 (8)19.0+0.9 

(7)21.4+0.8 (8)23.1+1.1 (6)20.0+0.3 

NS <0.01 
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Heart weight (mg) 

Obese (7)969 +2? (9)1006+l4++ 
J, „ **.++ 

Nonobese (12)876 +20 (12) 785+20** (6)785+20 

p <0,01 <0.01 

(« heart weight/* "fat free" body weldhtl 1000 

Obese (7)3.38+0.10 (9)4.12+0.11**'++ 

Nonobese (9)2.84+0.09 (8)3.13+0.09* (6)3.24+0.09*''^'^ 

p CO.01 <0.01 

^Values are Means + SEM with number of observa­
tions In parentheses. 

*Slgnlflcantly different from sedentary group at 
p <0.05 level. 

Significantly different from sedentary group at 
p <0.01 level. 

+Obese palr-ex vs. LEX differ significantly at 
p <,0.05 level, 

++Obese palr-ex vs. LEX differ significantly at 
p 0.01 level. 
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Table 5. Muscle weights from sedentary and exercised 
obese and nonobese zucker rats 

Sedentary pair-Ex LEX 

Soleus 

Obese (10) 109 + (8) 100 + 2*' + 

Nonobese (11) 118 + 2 (10) 111 + 6 (6) 115 + 4+ 

P <0.05 NS 

EDL 

Obese (9) 128 + 2 (8) 111 + 4»* 

Konobese (9) 150 + 4 (8) 131 + 5** (6) 119 + 

F <0.01 <0.01 

^values are Means + SEK with number of observations 
In parentheses. Muscle weights from the left and right 
side of each animal were averaged and that average was 
used as the muscle weight for the animal. If the left 
and right side muscles differed by more than 25 mg, data 
from that rat were not included. A difference of that 
magnitude Indicated one of the muscle pair was not com­
pletely dissected. Units are mg. 

"significantly different from sedentary weight at 
p CO.05 level. 

""significantly different from sedentary weight at 
p <0.01 level. 

"•"Obese pair-ex and LEX differ significantly at 
p <0.01 level. 
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similar in the sedentary animals. Exercise significantly 

increased mitochondrial activity and mazimvun rates were 

similar for the obese and nonobese rats, citrate synthase 

activities in the soleus muscles from the nonobese rat demon­

strated a graded response in both muscle fractions with 

increased exercise intensity. This graded response also 

frequently existed in other muscles and enzymes from the 

nonobese rat. 

succinate dehydrogenase activities in both soleus 

muscle fractions were similar for obese and nonobese rats 

in sedentary and exercised states (Table 6). Exercise sig­

nificantly increased succinate dehydrogenase activity in 

the 800xg supernatant only in the soleus muscles from nonobese 

rats. Exercise significantly increased mitochondrial activity 

of succinate dehydrogenase similarly in the soleus muscles 

from both phenotypes. 

cytochrome oxidase activity in the SOOxg supernatant 

was phenotypically similar in the soleus muscles from seden­

tary and exercised rats (Table 6). Exercise significantly 

Increased activity in the SOOxg supernatant only in the 

soleus muscles from the nonobese rats. Mitochondrial 

activity of cytochrome oxidase in the soleus muscle was sig­

nificantly higher in the sedentary obese than in the nonobese 

rats. Exercise significantly increased mitochondrial 

cytochrome oxidase activity only in the nonobese rats and 
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Table 6, Mitochondrial enzyme activities of soleus muscles 
from exercised and sedentary obese and nonobese 
2ucker rats 

Sedentary pair-Ex LEX 

800xg supernatant 

Citrate synthase 

Obese (7)512 + 39^ (9)799 + 46" 

Nonobese (11)402 + 23 (10)696 + 40** (6)777 + 32** 

p <0.05 <0,05 

Succinate dehydrogenase 

Obese (7)22.2 + 3.1 (9)25.5 + 4.5 

Nonobese (12)16.8 + 1.5 (10)29.1 + 3.5**(6)31.5 + 3.6** 

P NS NS 

Cytochrome oxidase 

Obese (7)9.63 + 2 . 6 8  (9)9.70 + I . 9 1  

Nonobese (12)6.24 + 1.03 (10)11.0 + 1.6* (6)13.6 + 1.1** 

P NS NS 
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lU,000xg mitochondrial pellet 

CItrate synthase 

Obese (7)209 + 19 (9)335 + 36** 

Nonobese (10)18? + 12 (10)262 + 29* (6)315 + 20** 

succinate dehydrogenase 

** 

p NS <0.05 

succinate d< 

Obese (7)99.6 + 9.4 (9)155 + 7 

Nonobese (10)95.9 + 9.2 (9)132 + 12** (6)169 + 17** 

P NS NS 

cytochrome oxidase 

Obese (7)104 +8 (8)133 + 13""^ 

Nonobese (9)63.4 + 4.3 (10)105 +14* (6)196 + 14**'+ 

P <0.05 NS 

^values are Means + SEM with number of observations 
in parentheses, units are nmoles/(mg protein x minute). 

•significantly different from sedentary rate at 
p <0,05 level. 

**Significantly different from sedentary rate at 
p <0.01 level. 

+Obese pair-ex and LEX differ significantly at 
p < 0.01 level. 
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the maximum rates were also significantly higher in the 

nonobese than in the obese rats. This phenotyplc difference 

in mitochondrial activity in response to exercise was 

significant (p<0.001). 

Citrate synthase activity in the SOOxg supernatant 

of the gastrocnemius muscle was phenotyplcally similar in 

sedentary and maximally exercised animals (Table 7)• 

Exercise significantly increased citrate synthase activity 

in the SOOxg supernatant in the gastrocnemius muscles only 

from nonobese rats. Mitochondrial activities for citrate 

synthase were phenotyplcally similar. Exercise resulted 

in no change in activities. 

The SOOxg supernatant and mitochondrial activities for 

succinate dehydrogenase in the gastrocnemius muscle were 

phenotyplcally similar in the sedentary animals (Table 7). 

Exercise had no significant effect on succinate dehydrogenase 

activity in this muscle. The SOOxg supernatant and mito­

chondrial activities for cytochrome oxidase were phenotyplcally 

similar In the gastrocnemius muscle (Table 7)• Exercise had 

no significant effect on cytochrome oxidase activity in the 

SOOxg supernatant from this muscle, but exercise significantly 

increased mitochondrial activity in the nonobese rat. This 

phenotyplc difference in the response of cytochrome oxidase 

to exercise in the mitochondrial fraction was not signifi­

cant. 
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Table 7» Mitochondrial enzyme activities of gastrocnemius 
muscle from exercised and sedentary obese and 
nonobese Zucker rats 

Sedentary pair-Ex LEX 

BOOxg supernatant 

Citrate synthase 

Obese (7)217 + (9)257 + 31 

Nonobese (12)154 + 13 (9)184 + 17 (6)237 + 18* 

P NS <0.05 

Succinate dehydrogenase 

Obese (7)9.47 + 1.19 (7)12.3 + 1.9 

Nonobese(ll)6.07 + 0.80 (10)7.26 + 1.87 (6)8.51 + 0.68 

p NS <0.05 

cytochrome oxidase 

Obese (7)4.58 + 0.6l (9)5.75 + 1.13 

Nonobese(12)3.99 + 0.69 (10)4.74 + 1.22 (6)5.97 + 0.93 

P NS NS 
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l4,000xg mitochondrial pellet 

Citrate synthase 

Obese (7)160 + 23 (9)163 + 17 

Nonobese (10)14? + 26 (10)129 + 15 (6)124 + 13 

P NS NS 

Succinate dehydrogenase 

Obese (7)60,2 + 11,0 (9)57.4 + ̂ K5 

Nonobese( 10)4-9.0 + 4.7 (10)47.6 + 5,2 (6)52.8 + 5.6 

P NS NS 

Cytochrome oxidase 

Obese (7)76.9 + 12.2 (9)79.2 + 9 .7  

Uonobese(10)56,8 + 6,5 (10)58.5 + 9.6 (6)95.7 + 7.7** 

P NS NS 

^values are Means + SEM with number of observations 
In parentheses, units are nmoles/(mg protein x minute). 

"significantly different from sedentary rate at 
p <0.05 level. 

Significantly different from sedentary rate at 
p <0.01 level. 

o 
o 
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The 600zg supernatant and mitochondrial activities In 

the EDL muscles were phenotyplcally similar for most of the 

enzymes that were tested (Table 8). Exceptions were a 

significant phenotypic difference for both citrate synthase 

activity in the 800xg supernatant» and for cytochrome oxidase 

activity in the mitochondrial fraction. In both instances, 

activity was higher in the obese animal. Exercise had no 

significant effect on enzyme activity in the EDL muscle. 

Mitochondrial respiration 

Mitochondrial state 3 respiration was similar for obese 

and nonobese rats in both the sedentary and exercised states 

(Table 9, 10, and 11). This respiration rate represents the 

maximum respiratory capacity of the mitochondria (?}• In the 

EDL muscle, exercise significantly decreased state 3 respira­

tion in the nonobese rat (Table 11). State 3 respiration was 

decreased by exercise in the obese EDL muscle, but not slgnifl 

cantly. This phenotypic difference in response to exercise 

was not significant. Exercise had no significant effect on 

State 3 respiration in the soleus (Table 9) or gastrocnemius 

muscle (Table 10). Respiratory control indexes in all 

muscles indicated the isolated mitochondria were tightly 

coupled. 

Work output 

During the last week of training, the obese pair-ex 

rats had an average work output on the treadmill of 
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Table 8, Mitochondrial enzyme activities of EDL muscles 
from exercised and sedentary obese and nonobese 
Zucker rats 

sedentary pair-Ex LEX 

800xg supernatant 

Citrate synthase 

Obese (7)475 + 12^ (9)400 + 42 

Nonobese (12)363 + l6 (10)361 + 25 (6)353 + 37 

P <0.05 NS 

Succinate dehydrogenase 

Obese (7)20.1 + 2.1 (9)18.1 + 1.8 

Nonobese (12)16.7 + 2.1 (10)17.6 + 2.8 (6)19.9 + 1.8 

p NS NS 

cytochrome oxidase 

Obese (7)5.68 + 1.23 (9)8.78 + 2.0 

Nonobese (12)6.99 + 1.43 (10)7.30 + 1.1 (6)10.1 + 1.7 

p NS NS 
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l4,000xg mitochondrial pellet 

Citrate synthase 

Obese (7)249 + 24 (8)18? + 23 

Nonobese (10)197 + 19 (9)176 + 22 (6)179 + 7 

P NS NS 

succinate dehydrogenase 

Obese (7)95.7 + 8.8 (9)79.5 + 6.7 

Nonobese (10)99.4 + 7.9 (9)92.4 + 4.5 (6)82.5 + 6.2 

P NS NS 

Cytochrome oxidase 

Obese (7)147 + 13 (8)122 + 12 

Nonobese (10)113 + 8 (9)95.3 + 10.6 (6)95.7 + 7.7 

P <0.05 NS 

^Values are Means + SEM with number of observations 
in parentheses. Units are nmoles/(mg protein x minute)* 
Exercise had no significant effect on enzyme activity. 
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90.7 + 1.8 kg«meters»day"^ (mean + SEM). as calculated by 

the method of pruth and Glsolf (17)* The nonobese rats 

had an output of 65.9 + 2.0 when they were palr-exerclsed 

to the obese and 104 + 3 when they were exercised to their 

capacity. All of these values differ significantly from 

each other (p^O.Ol). 
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Table 9. Mitochondrial respiration and degree of coupling 
of soleus muscles from exercised and sedentary 
obese and nonobese zucker rats 

Sedentary pair-Ex LEX 

State 3 oxygen consumption 

Obese (7)68.4 + 13.7* (9)60.8 + 4.3 

Nonobese (12)66.7 + 9.3 (10)55.6 + 7.8 (6)41.2 + 7.2 

State 4b oxygen consumption 

Obese (7)4.43 + 1.15 (9)4.58 + 0.99 

Nonobese (12)4.74 + 1.30 (10)4.77 + 1.28 (6)4.37 + 0.80 

Respiratory control Index 

Obese (7)24.7 + 5.2 (9)18.1 + 3.2 

Nonobese (12)18.9 + 2.6 (10)15.8 + 2.0 (6)12.3 + 1.4 

fjO 

Obese (7)3.67 + 0.07 (9)3.44 + 0.16 

Nonobese (12)3.60 + 0.05 (10)3.48 + 0.11 (6)3.34 + 0.08 

^values are Means ± SEM with number of observations 
in parentheses. Units are natoms 0/(mg protein i minute) with 
9mK pyruvate plus 1 mM malate as the substrates. No 
obese vs. nonobese means differ significantly and exercise 
had no significant effect on oxygen consumption. 
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Table 10. Mitochondrial respiration and degree of coupling 
of gastrocnemius muscles from exercised and 
sedentary obese and nonobese Zucker rats 

Sedentary palr-Ez LEX 

State 3 oxygen consumption 

Obese (7)63.4 + 5.5® • (8)46.7 + 7.6 

Nonobese (11)49.4 + 5.5 (10)36.7 + 3.7 (6)38.1 + 7. .9 

State 4b oxygen consumption 

Obese (7)4.01 + 1.23 (8)3.61 + 1.51 

Nonobese (11)4.30 + 1.50 (10)2.64 + 4.2 (6)2,04 1 ,8 

Respiratory Control Index 

Obese (7)27.6 + 7.3 (8)22.5 + 4.0 

Konobese (11)19.7 + 2.8 (10)22.9 + 4.2 (6)18.2 + 1. 8 

P:0 

Obese (7)3.45 ± 0.07 (8)3.18 + 0.13 

Nonobese (11)3.38 + 0.07 (10)3.25 + 0.12 (6)3.03 + 0. 07 

^values are Means + SEN with number of observations 
In parentheses. Units are natoms o/(mg protein x minute) 
with 9mM pyruvate plus ImM malate as the substrates. No 
obese vs. nonobese differ significantly and exercise 
had no significant effect on oxygen consumption. 
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Table 11. Mitochondrial respiration and degree of coupling 
of extensor dlgltoriun long us muscles for exercised 
and sedentary obese and nonobese Zucker rats 

sedentary Palr-Ex LEX 

State 3 oxygen consumption 

Obese (7)67.7 + 10.4a (9)44.5 + 6,0 

Nonobese (12)57.9 + 8.9 (10)39.6 + 3.4 (6)32.0 + 4.9* 

State 4b oxygen consumption 

Obese (7)3.41 + 1.02 (9)3.31 ± 1.01 

Nonobese (12)6.21 + 2.54 (10)2.79 + 0.56  (6)1.29 + 0.14 

Respiratory Control Index 

Obese (7)27.1 + 6.07  (9)21.0 + 4.5 

Nonobese (12)19 .6  +  3 .6  (10)19.6 + 3.5 (6)26.6 + 5.7 

Obese 

r : U 

(7)3.53 + 0.11 (9)3.29 + 0.20 

Nonobese (12)3.63 + 0.13  (10)3 .46  + 0 .15  (u)3.59 + 0.06 

^Values are Means + SEM with number of observations 
In parentheses, units are natoms o/(mg protein x minute) with 
9mM pyruvate plus imM malate as the substrates, NO obese 
vs, nonobese means differ significantly, 

"significantly different from sedentary rate at 
p-<0.05 level. 



www.manaraa.com

108 

DISCUSSION 

Body weight and food consumption were significantly 

reduced by exercise in the obese and nonobese rats, Male 

rats of other strains respond similarly to exercise (13). 

However, in spite of an average weight loss of 84 grams, 

the exercised obese male rats in this study still contained 

over seven times more body lipid than the sedentary nonobese 

rats. Female rats, whether obese (3» 3?) or nonobese (12), 

18, 35)» respond to exercise with no change or slight 

changes in body weight and food consumption* 

The obese rats could not run as fast as the nonobese 

rats. This was probably due to their Increased body weight, 

rather than due to a defect In muscle metabolism. When 

pair-weighed to nonobese rats, the obese rats can run at a 

pace of 26 meters per minute for 60 minutes (11). In 

addition, the calculated workloads were not very different 

for both maximally-exercised phenotypes in this experiment. 

"Empty carcass" weight and "empty carcass" protein in 

both the sedentary and exercised rats were significantly 

reduced in the obese in comparison to the nonobese. This 

phenotyplc difference in muscle accretion, which has also 

been shown by others (27), may contribute to the increased 

metabolic efficiency of the obese rat. It takes almost 
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twice as much energy to synthesize muscle tissues as it 

does lipid (27), Therefore, if the obese rat makes lipid 

rather than muscle, less energy need be expended. Further, 

this decreased muscle mass will account for less total energy 

utilization on a whole animal basis, in both instances, the 

energy saved by the obese rat is available and can be di­

verted into lipid synthesis. 

Enzymatic activities in the 800xg supernatant were 

either similar or higher in the obese in comparison to the 

nonobese rat. Maximum exercise-induced activities in this 

fraction were always similar between the two phenotypes, 

in general, mitochondrial enzyme activities were either 

phenotypically similar or higher in the obese animal. The 

exception was the increased mitochondrial cytochrome oxidase 

activity in the soleus muscles from the maximally exercised 

nonobese rats. This enzyme activity data, in conjunction 

with the mitochondrial respiration data, clearly demonstrate 

that the muscles from obese rats respond normally to exer­

cise, Therefore, there appears to be no latent defect in 

muscle oxidative capacity in the young obese rat, 

in most instances in this study, when enzyme activity 

in the 800xg supernatant was increased by exercise, mito­

chondrial enzyme activity also was increased. It is not 
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clear In these cases If enzyme activity was Increased be­

cause mitochondrial activity was Increased, or because both 

mitochondrial activity and total mitochondrial number were 

Increased, in the gastrocnemius muscles from nonobese rats, 

citrate synthase activity In the 800xg supernatant was 

significantly Increased by exercise, but mitochondrial 

activity was unchanged. These data suggest that exercise 

Increased the number of mitochondria In the gastrocnemius 

muscle• 

The gastrocnemius muscle did not show consistent In­

creases In enzyme activity with exercise. This lack of 

consistency Is unusual for this muscle (20). This may be 

because we only sampled the white portion of the gastroc­

nemius muscle. We took this sample because we wanted to 

see the response of fast twitch fibers to exercise and knew 

from a pilot study that the fast twitch EDL muscle was not 

recruited enough by our exercise protocol to experience an 

exercise effect. It appears that the fast twitch portion 

of the gastrocnemius muscles also was not recruited to any 

significant extent, past twitch fibers are recruited after 

the slow twitch fibers, primarily to Increase speed or 

force of contraction (38)» Âs an animal adapts to treadmill 

training, fast twitch fibers are no longer used as fre­
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quently. TO keep fast twitch fibers In constant use. Inter­

vals of very high speed running can be added to the training 

protocol (2), or the treadmill Incline can be raised to 

approximately 19° (19)• 

State 3 mitochondrial respiration was unchanged with 

exercise In the gastrocnemius and soleus, and decreased In 

the nonobese EDL muscle. This lack of an Increase In 

State 3 respiration with exercise has been reported by 

Krleger et al. (21), but Farrar et al. (l6) report signifi­

cant Increases In State 3 respiration with exercise. In this 

latter study, rats were exercised at 30 meters/minute for 2 

hours, which was a much harder exercise protocol than we could 

achieve In our study. Since the Increased mitochondrial 

activities for citrate synthase, succinate dehydrogenase, 

and cytochrome oxidase In the soleus muscle in this study 

did not produce a significant increase in State 3 respiration, 

none of these enzymes can be considered rate-limiting for 

mitochondrial respiration. Lemasters and sowers (23) suggest 

that the activity of mitochondrial ATP-ADP translocase is 

the rate-limiting step for mitochondrial respiration. 

We conclude that the muscles from the obese and nonobese 

rats have similar oxidative capacities per unit of muscle, 

but less total oxidative capacity due to less total muscle 

mass. Exercise can reduce body weight and body lipid 
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accretion in the obese rat, but this rat still remains 

obese and the defect in muscle accretion remains, 

Exercise may Improve glucose tolerance (3# 10), but it 

cannot normalize lipid or muscle accretion in the obese 

rat. 
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CAPACITY OF HEPATOCYTES PROM YOUNG 
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ABSTRACT 

Oxygen constimption of cells and Isolated mitochon­

dria, and mitochondrial enzyme activities, were measured 

in livers from obese and nonobese Zucker rats. The 

purpose was to determine if the liver plays a role in 

the increased metabolic effiolency of the obese rat, 

Hepatocyte oxygen consumption was similar in the obese 

and nonobese rats for all substrates tested. Mito­

chondrial respiration also was similar in both pheno-

types for all substrates tested. Activities of citrate 

synthase, succinate dehydrogenase, and cytochrome 

oxidase were similar for obese and nonobese rats. The 

activity of mitochondrial (X-glycerolphosphate de­

hydrogenase was lower in the obese rats. Taken together, 

these data show that hepatic oxygen consumption and 

oxidative capacity are similar in obese and nonobese 

rats. Rates of mitochondrial respiration with palml-

toylcarnltlne further show that the capacity for hepatic 

^-oxidation is similar In obese and nonobese rats. 

Therefore, the increased metabolic efficiency of the 

obese rat probably cannot be attributed to a decreased 

hepatic oxidative capacity. 
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INTRODUCTION 

The obese syndrome of the Zucker rat (fa/fa) has 

been well-charaoterlzed (6). Major abnormalities exhib­

ited by the obese rat included hyperinsulinemia (8), 

hyperphagia (l4), hyperlipemia (23), excessive carcass 

lipid accumulation (l4), mild hypothyroidism (35)t 

depressed muscle growth (24), and an increased metabolic 

efficiency (21), The liver of the obese rat has an 

increased lipid content (2, 4, 11), increased rates of 

lipid synthesis (4, 20), and key lipogenic enzymes (8, 27), 

increased lipid esterification (1, 11, 17), and in­

creased release of very low density lipoprotein (23), 

larger cells (4, 17)» and a possible decreased rate of 

lipid oxidation (11, 17, 30), compared with the nonobese 

rat. Elevated rates of hepatic lipogenesis remain in 

spite of pair-feeding to nonobese rats (3, 18), or 

treadmill exercise (8). 

This study addresses two aspects of hepatocyte 

metabolism in the obese zucker rat. First, lipid oxida­

tion to cOg and ketone bodies is depressed in the obese 

rat, but it is not clear if this is because ^-oxidation 

is depressed, Triscarl et al. (30) and Azain and Martin 

(1) have shown that in vitro ^^C-palmitate oxidation is 
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lower phenotypically in hepatocytes from obèse rats when 

the concentration of palmltate is 0.1 mM in the incuba­

tion media. However, Azaln and Martin (1) have demon­

strated that no phenotyplc difference In palmltate oxidation 

exists when the conoentration is 2.0-3*0 mM in the in­

cubation media. It seems that capacity for 6-oxidation 

is not different in obese and nonobese rats when certain 

experimental conditions are met. we believe that iso­

lated liver mitochondria provide a more direct method 

than the hepatocyte for the measurement of D-oxldatlon. 

Mitochondria can easily be exhausted of endogenous 

substrates, oxygen consumption of the mitochondria then 

can be directly related to the capacity of 6-oxidatlon 

when a carnitine-lipid ester is used as an exogenous 

substrate. Furthermore, rates of respiration can be 

compared with a variety of different substrates to 

determine if defective hepatic oxidation of nonlipid 

substrates exists in the obese rat. 

The second aspect of hepatocyte metabolism we ad­

dress is the determination of in vitro hepatocyte oxygen 

consumption in the Zucker rat. it is not known which 

tissue or tissues account for the increased metabolic 

efficiency in the obese rat. The liver is a highly 
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oxidative organ, and we wondered if a difference in 

liver cell oxygen consumption existed between young 

obese and nonobese rats. If so, the liver could play 

an important role in the increased metabolic efficiency 

of the obese rat. 

The purpose of this study, then, was to determine if 

a phenotyplc difference existed in hepatocyte oxygen 

consumption. We further wanted to determine if 6-oxida-

tion was depressed in the obese rat. Finally, we 

wanted to see if a phenotyplc difference existed for 

hepatic oxidation of substrates other than fatty acids. 
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MATERIALS AND METHODS 

Animals 

Six week old male obese and nonobese Zucker rats 

were obtained from the breeding colony at Iowa state 

University. The animals were fed a commercial rat ration 

(Halston-pTorina, St. Louis, MO) ad libitum and maintained 

at 24°c and 50^ relative humidity. They were housed in 

wire cages on a 12-hour light-dark cycle. 

Liver cell oxygen consumption 

Livers were rapidly dissected from decapitated 

rats, rinsed in cold 0.9# saline, blotted, weighed, and 

placed in a petri dish on ice. A small piece of liver 

was saved for protein determination. Liver cells were 

Isolated by a modification of the method of Howard et 

al. (12) because this method yielded cells with a high 

respiration rate. The liver was perfused with 20 ml 

of ice cold calcium-free Krebs-Rlnger bicarbonate media, 

PH 7*4 (KRB) (9)t which contained 0.05# collagenase, 

0.1# hyaluronldase, 5 mM glucose, 1 mM pyruvate, and 

20 mM n-2-hydroxyethylplperazine-n*2-ethan@8ulfonic 

acid (HEFES). This was slowly Injected into the portal 

vein with a syringe. The liver was then sliced by hand 

with a Stadle-Rlggs microtome (A. E. Thomas, Fhiladel-
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phla, PA) mounted on Ice. The slices were incubated 

in two 250.ml flasks that contained 10 ml each of the 

perfusion media. This incubation was done at 37°C under 

at atmosphere of 95% 02"5% COg in a gyrotory metabolic 

shaker. After 30 minutes of incubation, calcium was 

added to the media to a final 1.25 mM concentration, 

and the incubation was continued for another 30 minutes. 

The digested liver was poured over a 250 um nylon 

screen into a 100 ml plastic beaker on ice. The 

material that passed through the screen was centrifuged 

at I20xg for 1 minute» The supernatant was aspirated 

and the pellet was suspended in cold KRB media, which 

contained 20 mM HEPES and 1.25 mN calcium chloride (KHB-

HEPES)• This was then centrifuged at 50xg for 1 minute. 

The supernatant was again removed, and the pellet was 

resuspended in the KRB-HEPES media. The final centrif-

ugatlon was again at 50xg for 1 minute. After the 

supernatant was removed, the pellet was resuspended in 

7.0 ml of the KHB-HEPES media. The cells were counted 

in a hemocytometer chamber, cell viability, which 

routinely exceeded 90#, was determined by the exclusion 

of 0.6# trypan blue. During the entire isolation, the 

cells and all media were kept at 4°C, 
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Oxygen consumption was measured with a Clark-

type oxygen electrode at 37°C. Approximately 

1 X 10^ cells/ml were added to the electrode chamber 

and brought up to volume with KRB-HEPES media. When 

palmitate was used as a substrate, bovine serum 

albumin (BSA) was added to the media. The medium and 

cells were saturated with 95^ Og - 5% CO^, and the 

sample introduction port on the oxygen electrode was 

sealed with mineral oil, A baseline oxygen consumption 

rate was first recorded. Substrates were subsequently 

introduced through the introduction port with a syringe, 

and the resulting rate of oxygen consumption was re­

corded. The substrates used were 5 mM pyruvate, j mM 

glucose, 10 mM DL-Ctglycerolphosphate, 5 mM succinate, 

and 1 and 3 mM palmitate. palmitate was heated in dis­

tilled water to 65°C to dissolve it and then was in­

jected at that temperature with a preheated syringe. 

Protein in the liver slices and cells was assayed 

by the method of Lowry et al. (l6) with the addition 

of 2 mg per tube of sodium deoxycholate, to express 

oxygen consumption on a whole-liver basis, the total 

protein in the liver was estimated from the liver sample 

protein concentration, we then assumed that the liver 
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cells accounted for all of the protein In the liver, 

and in turn divided the total liver protein by the 

protein per liver cell to yield total cells per liver. 

Liver cell oxygen consumption was multiplied by the 

number of cells In the liver to give ozygen consumption 

per whole-liver. The assumption we made that the liver 

cells represented all the liver, although not entirely 

correct, was necessary to express the data on a whole-

liver basis, oxygen content of the 02-3aturated aedla 

was determined by the method of Robinson and cooper (22)• 

Liver mitochondrial oxygen consumption 

Liver samples were homogenized by hand with a teflon 

and glass homogenlzer in 250 mM sucrose, 2 myi ethylendl-

aminetetraacetlc acid (EDTA)» and 20 mM tris (hydroxy-

methyl) amlnomethane (Tris), pH 7#^ (13), The homogenate 

was centrifuged at 600xg for 10 minutes. The super­

natant was saved, and the pellet was resuspended In the 

sucrose media and centrifuged again at 600xg for 10 

minutes. The two supernatants then were combined and 

centrifuged at 9000xg for 10 minutes. The supernatant 

was aspirated, and the pellet was resuspended In the 

sucrose media to a concentration of 0.5 ml per gram of 

liver sample. All procedures were carried out at 4°c. 
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oxygen consumption of the mitochondria was de­

termined at 25°c In the air-saturated media of Kax 

et al. (19) which contained 15 mM KCl, 30 mM KHgPO/j,, 

25 mM Trls, 45 mM sucrose, 7 mM EDTA» and 5 mM MgCl2» 

PH 7.4, Initially, 125 UM ADP was added to exhaust en­

dogenous substrates and then exogenous substrates were 

added to the Incubation chamber as before. A State 4b 

respiration rate was then obtained (7)# This was 

followed by a larger addition of 320 UM ADP, which Ini­

tiated state 3 respiration, state 4b respiration again 

followed after all the ADP was phosphorylated to form 

ATP. substrates used in the assays were 9 mM pyruvate 

plus 1 mM malate, 50 uM palmltoylcarnltlne plus 1 mM 

malate, 9 mM succinate plus 4 uM rotenone, and 9 mM 

DL-A&glyoerolphosphate plus 4 uM rotenone. Assays with 

palmltoylcarnltlne contained BSA (32), while the 

other assays had 0,2# BSA in the media. 

The Respiratory control index (HCI) was calculated 

by dividing the state 3 rate by the state 4b rate (7)* 

The PtO ratio was calculated as described by Estabrook 

(10), The amount of ADP, which was added in state 3, 

was determined spectrophotometrlcally at 259 nm with an 

extinction coefficient of I6.3 mM"^*cm"^ (25), oxygen 
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content of the media and mitochondrial protein concen­

trations were determined as before. 

Liver enzyme activities 

Liver samples for mitochondrial enzyme activity de­

terminations were homogenized In the sucrose media used 

before. An aliquot of this homogenate was frozen and 

thawed three times In a dry Ice and acetone bath. 

This aliquot, which represents a whole homogenate frac­

tion, was then centrlfuged at 600xg for 10 minutes, and 

the supernatant was stored at -80°C until assayed. No 

sample was stored longer than 2 weeks. Another aliquot 

from the original homogenate was centrlfuged at 600zg 

for 10 minutes. The supernatant was then again centrl­

fuged at 600xg for 10 minutes. The resulting superna­

tant was then centrlfuged at l4,000xg for 10 minutes» 

and the mitochondrial pellet was resuspended In the 

sucrose media. This mitochondrial fraction was frozen 

and thawed three times as before, stored at -80°c, and 

assayed within 2 weeks. All procedures In the prepara­

tion of the enzyme fractions were carried out at 4°c. 

Citrate synthase (EC 4,1.3.7) was assayed by the 

method of Srere (29) with 5»5* dlthlobls (2-nltroben-

zoate) as the sulfydryl acceptor, succinate dehydrogenase 

(EC 1.3.99*1) and -glycerolphosphate dehydrogenase 
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(EC 1.1.99*5) were assayed by the method of singer 

and Kearney (26) with phenazlne methosulfate and 2,6-

dlchlorolndophenol as the artificial electron acceptors, 

cytochrome oxidase (EC 1.9.3.1) was assayed by the 

method of Wharton and Tzagoloff (3^)i except that a 

trace amount of sodium dithlonate was used to reduce 

the cytochrome C. Activity was monitored by following 

the oxidation of reduced cytochrome C at 550nm. protein in 

the mitochondrial fraction and 600xg supernatant was assayed 

as before. All rates of enzyme activity were proportion­

al to enzyme concentration, except cytochrome oxidase, 

which was proportional to the first order rate constant. 

Chemicals 

All substrates were purchased from Sigma chemical 

CO. (St. Louis, MO) except acetyl-COA was purchased 

from P-L Blochemlcals (Milwaukee, WI). Collagenase 

and hyaluronidase were purchased from Worthlngton 

Diagnostic systems (Freehold, NJ). Other chemicals were 

reagent grade and purchased from Fisher Chemical Co. 

(Fair Lawn, NJ). 

Statistics 

The effect of substrate on in vitro liver cell 

oxygen consumption was analysed with a paired t-test 
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when possible (28), Possible phenotype x substrate 

Interactions for the addition of BSA and glucose to 

the hepatocyte assays were analysed by analysis of 

variance (ANOVA) at the Iowa State University computer 

Center. All other comparisons in this study were made 

with the t-test (28). A probability of 0.05 or less was 

taken to be statistically significant. 
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RESULTS 

Liver weight and composition 

Liver weight and liver protein were significantly 

increased in the obese rats (Table 1). The amount of 

protein per 10^ cells, percent of wet weight as protein, 

and total number of cells were similar in the livers 

from obese and nonobese rats. 

Table 1, Liver weight, protein, and cell number in obese 
and nonobese Zucker rats 

Obese Nonobese p 

Wet weight (g) (8)8,68 + 0 ,81* (9)6,46 + 0 .29 <0,01 

Total 
protein (g) 

(8)1,89 t 0 .07 (8)1,42 i 0 .09 <0,01 

(100, 

o
 

+1 o
 

CV
J CV
l C
O

 

.5 (8)21,7 ± 0 .7 NS 

mg protein 
10^ cells (8)3.51 ± 0 .30 (8)3.12 ± 0 .27 NS 

cells X 10^ 
g wet weight (7)71.3 ± 6 .9 (8)67.5 ± 7 ,6 NS 

cells X 10^ 
liver (7)473 ± 53 (8)591 ± 81 NS 

Values are Means + SEM with number of observations 
in parentheses. 
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Liver cell oxygen consumption 

Liver cell oxygen consumption was similar In obese 

and nonobese rats when expressed either on a cellular 

basis (Table 2) or on a whole-liver basis (Table 3)• 

Addition of BSA significantly Increased liver cell 

oxygen consumption In both phenotypes, and the ANOVA 

Indicated that the animals responded similarly. The 

addition of glucose, pyruvate, or palmltate had no sig­

nificant effect on liver cell oxygen consumption. The 

addition of succinate and O^-glycerolphosphate signifi­

cantly Increased liver cell oxygen consumption. The 

addition of succinate was especially striking because It 

Increased oxygen consumption over 5-fold In both pheno­

types. On a cellular basis, only the addition of glu­

cose produced a significant phenotyplc difference In 

liver cell oxygen consumption. Due to variability, the 

difference In the obese and nonobese responses to 

glucose relative to KHB alone was not significant, on 

a whole-liver basis, the addition of glucose and suc­

cinate produced a significant phenotyplc difference In 

oxygen consumption. In all of these cases, hepatocyte 

oxygen consumption was higher In the obese rat. 

Liver enzyme activities 

Enzyme activities for citrate synthase, succinate 



www.manaraa.com

134 

Table 2, Hepatocyte oxygen consumption from obese and 
nonobese Zucker rats on a cellular basis 

Media Obese Nonobese P 

KRB alone (8)13.3+1.5* (9)11.3+1.9 NS 

KRB plus 1% BSA (8)19.5+1.8** (9)18.4+3.2** NS 

KRB plus 5mM 
glucose 

(8)14.9+1.6 (9)10.4+0.8 <0.05 

KRB plus 5mM 
pyruvate 

(8)14,0+2.3 (7)12.9+2.2 NS 

KRB plus lOmM DL-
<<-glycerolphosphate 

(8)18,0+1.6* (9)18,8+2,5* NS 

KRB plus 5mM 
succinate 

(8)93.0+15.8** (8)65.8+8,1** NS 

KRB plus 1^ BSA 
and ImM palmltate 

(8)24.4+2.3** (9)20.8+1,4 NS 

KRB plus 1% BSA 
and 3mM palmltate 

(8)19.7+2.7 (9)17.4+1.7* NS 

^Values are Means + SEM with number of observations 
In parentheses, units are nmoles 02/(10° cells x minute). 

^Significantly different from KRB alone rate at 
p <0.05 level, 

**Slgnlflcantly different from KRB alone rate at 
p <0.01 level. 
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Table 3* Hepatocyte oxygen consumption from obese and 
nonobese zucker rats on a whole liver basis 

Media Obese Nonobese P 

KRB alone (8)7.72+1.39* (9)5.15+0.86 NS 

KRB plus 1% BSA (8)11.2+1.8** (9)8.70+1.33* NS 

KRB plus 5mM 
glucose 

(8)8.65+1.56 (9)4.76+0.80 <0.05 

KRB plus 5mM 
pyruvate 

(8)8.11+1.46 (7)5.87+0.98 NS 

KRB plus lOmM DL-
0(-glyoerol#iosphate 

(8)10.4+1.9* (9)8.55+1.43* NS 

KRB plus 5mM 
succinate 

(8)54.0+9.7** (8)30.0+5.0** <0.05 

KRB plus 1% BSA 
and ImH palmitate 

(8)14.0+2.2* (9)9.83+1.50* NS 

KRB plus 1% BSA 
and 3mM palmitate 

(8)11.3+1.8 (9)8.22+1.26 NS 

^values are Means + SEM with number of observations 
In parentheses, units are umoles 02/(whole liver x minute). 

^Significantly different from KRB alone rate at 
p^0.05 level. 

**Slgniflcantly different from KHB alone rate at 
p<0.01 level. 
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dehydrogenase, and cytochrome oxidase were similar In 

obese and nonobese rats In both the 600xg supernatant 

(which represents a whole homogenate fraction) and the 

l4,000xg mitochondrial pellet (Table 4). The activity 

of zn^-glycerolphosphate dehydrogenase was significantly 

greater In the nonobese rat than in the obese rat. 

Liver mitochondrial respiration 

Maximum mitochondrial respiration rates (state 3) 

were similar for the nonobese and obese rats (Table 5)• 

Respiratory control indexes, PtO ratios, and state 4b 

respiration rates were also similar for both phenotypes 

within any substrate. The Respiratory control indexes 

show that assays with pyruvate plus malate, palmltoyl-

carnltlne plus malate, and succinate plus rotenone con­

tained well-coupled mitochondria. The assays with 

-glycerolphosphate plus rotenone were not uncoupled. 

The Respiratory Control Index Is low because this sub­

strate was poorly oxidized by the mitochondria. The 

State 4 respiration rate seems to represent the maximum 

oxidative capacity of the mitochondria for this substrate. 
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Table 4. Liver enzyme activity rates from obese and 
nonobese zucker rats 

Enzyme Obese Nonobese 

Citrate synthase 

Succinate 
dehydrogenase 

Cytochrome 
oxidase 

Citrate synthase 

Succinate 
dehydrogenase 

Cytochrome 
oxidase 

D(-glycerolphos-
phate dehydrogenase 

600xg supernatant 
(7)19.7+1.8* (9720.3+1.3 NS 

(7)8,2^0.68 (9)9.84+0.53 NS 

(7)21.5+2.4 (9)25.8+2.4 NS 

l4,000xg mitochondrial pellet 

(8)87.3+9.0 (8)74.^3.5 NS 

(8)75.8+2.6 (8)72.9+3.2 NS 

(8) 164+7 (8) 159+10 NS 

(8)4.25+0.20 (8)5.34+0.19 <0.01 

^Values are Means + SEM with number of observations 
In parentheses. Units are nmoles/(mg protein x minute). 
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Table 5* Substrate dependent liver mitochondrial res­
piration and degree of coupling from obese and 
nonobese zucker rats 

Genotype State 4b State 3 R.C.I. PiO 

Pyruvate plus malate (9mM«lmH) 

Obese 4.35+0.46* 21.1+2.6 4.8+0.3 2.62+0.11 

Nonobese 4.42+0.30 17.5+2.5 4.1+0.6 2.70+0.11 

Palmltoylcarnltlne plus malate (50uM:lmM) 

Obese 6.84+0.46 50.6+6.8 7.2+0.7 2.42+0.12 

Nonobese 7.13+0.68 40.0+5.6 

succinate plus rotenone 

6.0+0.9 

(9mHi4uM) 

2.32+0.04 

Obese 14.1+0.9 112 + 6 8.0+0.2 1.62+0.05 

Nonobese 15.2+0,7 102 + 5 6.8+0.4 1.62+0.05 

DL-o(-glycerolphosphate plus rotenone (9mMi4uM) 

Obese 5.65+0.47 7.14+0.95 1.3+1 1.43+0.04 

Nonobese 6.00+0.64 7.94+0.49 1.4+0.1 1.38+0.07 

Values are Means + SEM for n=8 observations In each 
group. NO obese vs. nonobese means differ significantly. 
Units are nmoles 02/(ms protein x minute). 
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DISCUSSION 

oxygen consumption In the isolated hepatocytes was 

generally similar in the obese and nonobese rats, on a 

cellular basis, hepatocyte oxygen consumption was sig­

nificantly higher in the obese animal when glucose was 

used as the substrate, one would expect pyruvate to 

have an effect similar to glucose, but it did not. This 

discrepancy exists because the effect of glucose was 

primarily a statistical one. With no exogenous sub­

strates present, hepatocyte oxygen consumption was 

slightly higher, although not significantly higher, in 

the obese animals* The addition of glucose decreased 

oxygen consumption slightly in the nonobese animals 

and increased oxygen consumption slightly in the obese 

animals. This in turn made the nonsignificant pheno-

typic difference in oxygen consumption statistically 

significant. However, without a parallel response with 

pyruvate or significant phenotype x substrate interaction, 

the real significance of this effect of glucose is 

questionable. 

Mitochondrial respiration rates were phenotypically 

similar for all substrates tested. Mitochondrial res­

piration also was very substrate-dependent, state 3 
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respiration, which represents the maxlmm oxygen 

consumption rate of the mitochondria, could not be 

sustained without the addition of exogenous substrates. 

This link between mitochondrial oxygen consumption 

and the oxidation of exogenous substrates gave us a 

direct way for measuring rates of substrate oxidation. 

The oxidation of palmltoylcarnltlne was not depressed 

In the obese rat liver because State 3 mitochondrial 

respiration rates with this substrate were similar 

for both phenotypes. This has been recently demon­

strated In older female Zucker rats as well (5)* Lipid 

oxidation Is lower In hepatocytes from obese animals 

when Incubated with 0,1 mM palmltate (1, 30)• As 

shown In this study, however, a phenotyplc difference 

In ^-oxidation does not contribute to this difference 

In lipid oxidation. 

succinate greatly stimulated respiration In both 

liver mitochondria and Isolated cells. Van Rossun (33) 

has determined that most of the succinate added to 

liver slice Incubations Is oxidized to fumarate and 

malate and then released into the incubation media. 

Alpha-glycerolphosphate stimulated hepatocyte respira­

tion, but was poorly utilized by the Isolated mitochondria. 
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Pyruvate had no effect on hepatocyte respiration, but 

was readily oxidized by the mitochondria. These data 

collectively Indicate that no defect exists In liver 

mitochondrial oxidation of pyruvate, palmltoylcarnltlne, 

succinate or ̂ -glycerolphosphate In the obese rat. 

Trlscarl et al, (31) have suggested that, based on oxi­

dation to 1^C02• pyruvate and succinate oxidation Is 

depressed In the hepatocytes from obese animals. How­

ever, the oxidation rates between phenotypes In their 

report are not very different. Furthermore, tne use of 

l^C-labeled substrates for the measurement of substrate 

oxidation Is problematic since it Is unclear how much 

of the label is taken up into the hepatocyte, how much 

Is Incorporated Into glycogen, and how much Is recycled 

and then oxidized to CO2 by the hexose monophosphate 

shunt, our method is a much more direct measure of 

substrate oxidation and probably better represents the 

true potential for cellular oxidation of the substrates. 

Activities of the rate-limiting oxidative enzymes 

citrate synthase, succinate dehydrogenase, and cytochrome 

oxidase were similar for both phenotypes. These 

enzyme activities support the finding that no differ­

ence exists in the capacity for maximum mitochondrial 
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respiration. The rates for û^-glycerolphosphate 

dehydrogenase were depressed In the obese rat. This 

difference may simply reflect the lower levels of 

serum T^ and T^^ In the obese rat (35)» since the 

activity of this flavln-lInked mitochondrial enzyme 

Is thyroid hormone-sensitive (15)• It may also be 

of no consequence because ZY-glyoerolphosphate was 

poorly oxidized by the mitochondria and the respira­

tion rates were similar for obese and nonobese rats. 

It is evident, as covered in the introduction, 

that certain aspects of liver metabolism differ in 

obese and nonobese rats. However, hepatic oxygen 

consumption and oxidative capacity are not pheno-

typically different* The liver does not seem to be 

a major contributor to the Increased metabolic effi­

ciency of the obese rat. Furthermore, differences 

in hepatic lipid oxidation in obese and nonobese rats 

are not caused by a difference in the capacity for 

^-oxidation. 
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GENERAL DISCUSSION AND CONCLUSIONS 

Muscle oxidative capacity, as measured by enzyme 

activities and mitochondrial oxygen consumption, was pheno-

typlcally similar In 6 and 12 week old male Zucker rats. 

The response of muscle to treadmill training further demon­

strated that there was no latent defect In muscle oxidative 

capacity In the obese rat. In vitro muscle oxygen consump­

tion was also similar In 6 week old obese and nonobese 

rats. The only phenotyplc difference In muscle metabolism 

demonstrated In this dissertation was a depressed rate of 

muscle accretion In the obese rat. This defect may con­

tribute to the increased metabolic efficiency of the obese 

rat since on a whole animal basis the muscle tissue will 

use less energy. However, the Importance of this defect 

to the etiology of the obese syndrome Is questionable as 

It Is neither present In the obese female rat nor In the 

earliest phases of the development of the obesity. 

Liver oxidative capacity was phenotyplcally similar 

In the 6 week old Zucker rats, as was hepatocyte oxygen 

consumption. The obese rats had larger livers which con­

tained more protein than that of the nonobese rats, since 

the oxidative capacity and oxygen consumption were pheno­

typlcally similar, the liver probably also does not contrlb-
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ute to the Increased metabolic efficiency of the obese 

rat. 

Exercise ameliorated, but did not normalize, the 

hyperphagla and excess lipid accretion of the obese rat. 

This rat has a great propensity for lipid accretion, and 

It Is clear from the literature that It will synthesize 

excess lipid In spite of all attempts to stop It, 

This dissertation does not constitute a breakthrough 

In the understanding of the etiology of zucker rat obesity. 

However, It does rule out a difference In liver and muscle 

oxygen consumption and oxidative capacity as significant 

contributors to the obese syndrome. In this regard, 

this dissertation has furthered the understanding of 

obesity In the Zucker rat. In addition, because of this 

work, future Investigators should be able to choose more 

fruitful organs or metabolic systems to study In an effort 

to determine the major etiological factors for this 

obese syndrome. 
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